
ft

w
e
e

M.A.S.D.

Book No. 309 LIBRARY,

This Book forms. part of the MAL
Software library.

If there

on this page

Copy of the
an UPDATING
so it could

If there is NO st

ZERNOKED stamp on
copy has NO upda

reader uses it ea

Marcon!-Eiliatt Avionic Systems Limited Compiled from Varicus Sources;
Airport Worts, Rochester, Kent. ME12XX moa ~ ? .

Issued by @.2.Frogzett.

A GEC-Marcon Electronics Company
TO

a y AAAS oP: ot

Mocdyweay (G834) 44409 . le vA bs
Hotsu OR focnesier - —

@ The Copyright in tia document (a the property of Elicit Prothers {Londont Limited, The document is sup.i

expresa terme thalitia to be treated ss confidential and thet itcnay not te copied, used or dlacloved to auhurs

writiag by this Comoeny,

avers (Leaders, Linas

yod except && cuthoriged ia

'

S
y

J

—

_
J

o
d

r
e
e

w
o
n

PREFACE.

This book describes the following 10 tapes:-

920C CORAL MACRO PASS, CAP BORSHAM/OOD VERSION 33;
920C CORAL PASS iA, CAP BOREHAMWOOD VERSION 33;
9200 CORAL PASS 1B, CAP BORSHAMWOOD VERSION 3B;
9206 CORAL PASS 2, CAP BOREHAMWOOD VERSION 3B;
920C CORAL LOADER, CAP VERSION 3,.SSPTHMBER 1974;
920C CORAL DATA RSTENSION, CAP VERSION 2, SEPTSMPER 1974;
920C CORAL OBJECT DUMP, CAP VERSION 2, SEPTEMBER 19743
CAPQF, TUF VERSION 16/2/76, . R.L.B. Mode 33
CORAL SK EA DSD LOADUuR, . Binery Mode 3;
CORAL 16K EXTAUDED LOADER, Binary Mode 3.

These tapes form a CORAL Compiling System for 900-Series 18-Bit
Machines, Although written initially for a 920C their use is not

confined to this machine.

The CORAL Lanzuage is defined and described in Book 302,
CORAL INFORMATION,

This book is in two sections. The first and larger section,
"CORAL COMPILER USERS' MANUAL" relates to the first 8 tapes.
The second and smaller section, "HXTENDED LOADER", describes
the changes to the "USERS' MANUAL" when one of the "EXTENDED

LOADER" tapes is used rather than the "VaRSION 3" loader tape.

The CORAL Compiling System's minimum compile-time requirements
are a 920C or 905 computer (most passes will not run on a 920A,
920B or 903, or 920M computer) with a punch, reader, and
preferably a teletype. Pazes 2 & 64 of the Users' Manual herein
state that 16K of store is needed; but for all except "practice"
programs, 24K is needed (and the directives on page 70 will have
to be used).

The system as described herein is a 5-pass paper-tape oriented
system. 905 users with a Disk and at least 32K of store,
available at compile time, are reeemmended to use the SODAR

system described in Book 310, 905 SODAR.

Lo oad
. ~ att

The CORAL Compiling System (whether run under SODAR or not),
can be used to produce object code to run on any 900-Series
18-bit machine except a 920A (including: 920B or 903, 92CH,
9200 or 905), and of any size (from 8K to 128K), with just a
tape reader for program loading.

For efficiency the compiler uses the "absolute addressing"
stratecy, and the primary consequences of this are the following
limitations on the user's programs:-

The data of the whole program must normally be placed in
the first SE of store; althongh non-preset data can be
placed anywhere in store if accessed "anonymously".

On a 920B cr 903, or a 920M, the progrem code itself must
also all be placed in the first 8K of store, so the only usd

of. gstore beyond 8K is for anonymous data,

It will be seen that 3 alternative loaders are available.

All 3 can produce a Binary tape of the Object program.

Te advantages of the "VERSION 3" loader are:-

The Binary tape produced by it, for a given program, is

shorter than that produced by the extended loaders.

The Binary tape is in the standard "A.C.D. 900-Series 49-Bit

Binary Tape Format, 1/4/70", whereas that produced by
the extended loaders is not.

The Version 3 loader may be used in "load-and-go" mode,

wmlike the extended loaders (which don't, in fact, load

anything). This reduces the system from "5 passes + Binary

Loading" to "5 passes including loading".

However the Version 3 loader restricts the user's progrem to

“loeations 556 to 8165 and 8192 to 14707; limiting the total

data space (other than anonymous reference) to 7609 locations,

from 6157; and the total datat+program space to 14124 locations,

from 125K.

The advantages of the "EXTENDED LOADERS" are that:-

- These restrictions are removed.

The Extended Loader can be run on an ok macnine,

(which may be a 920B or 903, 920N, or 9200 or 905), .

whereas the Version 3 loader always needs a 16K store.

C

| L

o
c

“7

a
n

~ sk

There are some compatability. problems using these alternative

loeders. The differences in the Binary tape lengths and formats

imply that tapes made by the two routes, of the same program,

will be different; and I would imagine that the Object codes

when loaded into core, will not be identical, either.

w
e
s

The implementation of the Multi-level environment, and of the

Run-time sumcheck, in the Version 3 and extended loaders, are

totally different: in a progrem using either of these facilities
a chanee from the Version 3 loader to an extended loader, or
back, would require a change to the CORAL source.

Tis standerd "A.C.D. 900-Teries 18-~Bit Biz

geoduced by the version 3 loader, and referred to on pag eT? of

the User's Manual herein, is defined in

Book 106, 903/905/920 USEFUL NOTES.

This CORAL Cempiling System operates in ISO/ASCII Teleprinter

Code, as referred to on page 59 of the User's Manual herein.

In standard 900-Series terminology this is "903 Telecode".

There is no CORAL compiler for the 900-Series which operates in

the alternate "920 Telecode". 903 and 920 Telecodes are both

defined in Book 106, 903/905/920 USEFUL NOTES.

waxy Mane Format, 1/4/70",

he
.

N
w

]
n
s
]

w
y

os : ah

The originel "CAP 920C CORAL" was written, and. updated in parts
twice, by CAP (Resding) Ltd., for the Royal Aircraft Establishment
at Farnboroush. A further partial update was produced by CAP for

RL, MEASL, Borehamwood. This sequence of events produced the first
7 of the tapes listed above, which are commonly known as

"Issue 3Bii or.4" (!). The extended loader was written by CAP for
MASD, MSASE, at Ro-chester: the 2 versions listed above are 8K &
16K versions of CAP's issue, modified to make maximum use of the
first 8K of store and with one error corrected.

These programs are known to contain numerous errors, but as more

are still being discovered I have seen little point in recording

even those alresdy known in @ document updated as infrequently as
I intend this to be. I. shall endevor to keep ell serious users of

the compiling system informed of all errors discovered, and
likewise would appreciate being informed ef all errors found in

the system, as I heave issued it, with supporting documents#ion.

I see little chance of these errors being corrected; particularly
in view of the number cf organisations involved,

The "CAPQF" tape supplied in this package is a complete re-write;
it is an all- round + uerowenent on the original issued by CaP and
based on 903 @F; whilst meintaining full 900-Series compatability.

o
n

be a
S
e

we
re

oN . 26

CCRAL Me ACRO PASS, AP BOREARWOOD ERSION 3B;

CORAT PASS 14,. CAP BORERAIWOOD VERSION 33;

_CORML _PAS (o
i

+
 wd
 o o La]

w oO

t
r

td

rt

eo
n cad

ie
d

le
) ©
 co

ad
 a]

ee]

La
) ie
)

bc

\N
 to

co2aL PASS 2, CAP

CORAL LOADER, CAP VERSION 3, SePTAMVBas 19743

CORAL DATA RETENS SION CAP VERSION 2, BPTENEER 19743

CORAL CBIECT DUP, CAP VERSION 2, SEPTEMBER 19743

mrt Tres 9 ft n n Waa 2
TIe er ASTON 46/2; js el: era PONS De

o
n

c
a
e

ad

_]

rnin it aie Gan : ; ar ; FAG Gites 0 UAL Og CUS
. * rm

aE \ ‘ ay, : CSMEAL CITI en? OSTA at pre: Tatar ;

i WIS : Sea es Se 2 ee a VE Rage ee shade ne i , “

mae ane ae a . : - . Pace 1

: a :
, Shy TF

6800 CVIAL COMRILER | eye
a Version (Date 1

Paerear any . :
BREE ee hee : OB thor . ede

. 7 AUTO: ib Grant

f

on oe po eerer mee

‘ °

wee

, ar
~ a6

- ACKNOWL BDGEMENTS:

This manual provides user information on

the CORAL 66 Compiler for the Elliott 920C

computer written by Computer Analysts and

Progranmers Ltd.

- We wish to acknowledge the support and

advice which has been received during the

production of the 920C CORAL Compiler from

the Royal Aircraft natabld shment (Farnborough),

“the Royal Rader Establishment (Malvern) and

Marconi~Biliott Avionics Systems Limited

(Rocheste er).

a . Reference Introduction
ROYAL AIRCRAFT ESTABLISHMENT

Page 2
BPE EPO AY eeownag ess HKD : . .

§20F ee A TR wer dead abel = . Version /Date l

USERS MANUAL 7 Author L Grant

I

a]
—
_

e
n

t
o

A knowledge of the Official Definition of CORAL 66

‘(if less than 8K of object code is produced this may

INTRODUCTION

(to which references are written OD a.b.c...) and.

the 920C order code is assumed. :

The language implemented is full CORAL 66 excluding

recursion and including the additional features of

partword arrays and shift operators together with a

method of producing multi-level object code. |

The minimum configuration for compilation of a CORAL 66

program is an Elliott 920C(905) with 16K of core store,

a paper tape reader, a paper tape punch and a teieprinter

be executed on a 920B (903) upwards compatible computer).

The following description summarises the contents of _

each chapter: a 7
, /

Chapter Il: A description of the implementation dependent

: features of the language together with an

expansion of the relevant sections of the
Official Definition of CORAL 66. (The full

CORAL syntax is summarised in Appendix A).

A description of the additional features

provided.

-A list of all CORAL language symbols and
external character codes.

Chapter 2: A description of the constituents of the

920C CORAL Compiling System.

A note on the object code compatibility

for alternative machine configurations.

.
7

f
e
 GAP ROYAL AIRCRAFT ESTABLISHMENT —

Page 3
8290 CORAL COMPILER Version /Date i

USERS MANUAL . Author = ~% Grant

Reference Introduction .

a

w
e
e

' A description of the purpose, mode of
operation and options provided by each

program supplied.

A description of the general method of

interface with the user.

Chapter 3: A description of the operating instructions

for each program.of the 920C CORAL Compiling

System together with a summary of the

options provided.

Chapter 4: A description of the error diagnostic
. messages produced by each compiler program |

- together with any further diagnostic jf
information produced to aid the user

with program development.

Chapter 5: This chapter can normally be ignored

since all necessary user information is

provided by Chapter 1. However, if the

structure of the object code is particularly
important to the user it is hoped that the

required information is provided.

A general description of the structure

and runtime storage of the object code.

Notes on the optimisations performed

by the Compiler and methods of producing

-efficient object code.

A description of the interrupt handling

housekeeping code which can be generated

by the Compiler.

wd

e
d
d

.
b
a
n
d

|

58

wa
l

* f
aa
ns
d

A
3

br
a.

i
b
e
n
e

ey

Ra
me

n
re

es
e

w
e
n
n

en
a

ee
e
s
e
t

J

CAP Reference tIntrod :
ROYAL AIRCRAFT ESTABLISHMENT tro uction

Page 4
_ BOSr COAL MMsaPILeER. uo
626C Wer IO COMPILES Version /Date ; 1

USERS MARUAL : Author L Grant

p
o
o

a
d

>

4
r
d

r
s

e
s

o
e

o
e

Note:

The following representations are used within the manual:

identical in structure for each component

a
’

In order to simplify cross-referencing,

chapters 2, 3 and 4,which provide a

description, operating instructions and

diagnostic information respectively, are

of the 920C CORAL Compiling System.

. p) _ carriage return

Yonull

GAP , Reference . Contents
ROVAL AIRCRAFT ESTABLISHMENT /

. Page 5.
§26C CORAL COMPILER Version /Date 46/2/76

USERS MARUAL Author Various °

CONTENTS

INTRODUCTION

CHAPTER 1 : CORAL LANGUAGE DEFINITION

CHAPTER 2 COMPILER OPERATION ae

CHAPTER 3 OPERATING INSTRUCTIONS

CHAPTER 4 : DIAGNOSTIC OUTPUT

CHAPTER 5 OBJECT CODE STRATEGY

APPENDICES: APPENDIX A - 920C CORAL SYNTAX

APPENDIX C - COMPILER OPERATION

APPENDIX D - COMPILER INPUT/OUTPUT

APPENDIX E - EXAMPLE PROGRAM

G - SUMMARY OF OPERATING APPENDIX
INSTRUCTIONS

A Getailed index is provided at the head of each chapter.

__
—I

j

GAR ROYAL AIRCRAFT ESTABLISHMENT
Reference 1-

Page 6

Version/Date 1

Author L Grant

44
] 20C CORAL COMPILER

USERS. MANUAL

mo

|

~
v
d

r
c

CHAPTER 1

CORAL LANGUAGE DEFINITION

1.1. CLARIFICATION OF THE OFFICIAL DEFINITION

ede

1.1.4

bt

bet

bs
e

be

f
s
 ps

.

wo

O
x

1 Units of Compilation

2 Communicators

-3 Transfer of Control between Segments

4 Object Code Limits on Compilation

Unit Sizes © .
DECLARATIONS

NUMERIC TYPES

1.1.3.1 Floating Point

1.1.3.2 Fixed Point

1.1.3.3 Integer

PACKED DATA

1.1.4.1 Wordposition and Bitposition

1.1.4.2 Floating Table Elements

1.1.4.3 Results of Partword Table Element Access

OVERLAY DECLARATIONS

1.1.5.1 Restrictions

1.1.5.2 Overlay of Floating Variables

PARTWORDS

1.1.6.1 Bitposition

1.1.6.2 Floating Variables

1.1.6.3 Result of Partword Access

LOCATION EXPRESSIONS

WORD-LOGIC

EVALUATION OF EXPRESSIONS AND CONDITIONS

1.1.9.1 General Algorithm

Scaling
Compile Time Arithmetic

Rounding

Order of Evaluation

1.1.9.2

1.1.9.3

1.1.9.4 Overflow Checking
© 1.1.9.5
1.1.9.6

‘GAP ‘Reference. — 1.
ROYAL AIRCRAFT ESTABLISHMENT

Page 7
OC CORAL COX ® : . 920C CORAL COMPILE Version/Date 16/2/16

USERS MANUAL . Author
Various

m3

4

im

—

ma)
 i

|

o
y

b
e
e

r L
.
-
—
—
_

1.2

, 1.2.

1.1.14

1.1.15

e
e

CODE STATEMENTS —

FOR STATEMENT ,

-1.1.11.1 For-elements with STEP

1.1.11.2 Entry of DO Loop

PROCEDURES .

LITERALS AND STRINGS -

1.1.13.1 Character Representation
1.1.13.2 Literals

1.1.13.3 Strings

COMMENTS

1.1.14.1 Comment Sentences

1.1.14.2 Concatenation of Comments

MACRO FACILITY

1.1.15.1 Macro Definitions

1.1.15.2 Macro Deletions

1.1.15.3 Macro Calls
1.1.15.4 Macro Expansion

1.1.15.5 Recursive Macro Calls

1.1.15.6 Nested Macro Definitions

CORAL LANGUAGE EXTENSIONS

el

2

1.2.4

SHIFT OPERATORS

BIT AND BYTE ARRAYS

1.2.2.1 Storage Space
1.2.2.2 Bit and Byte Array Access
1.2.2.3 Presetting of Bit and Byte Arrays

RUNTIME FACILITIES

1.2.3.1. Multi-level Programs

1.2.3.2 Program Sumcheck

1.2.3.3 Initialisation of Data Area

4-2.3o.4. Self-Trigsering and Autostart

CONDITIONAL COMPILATION

CORAL SOURCE REPRESENTATION

1

1.3.

63.17
3.2

LANGUAGE SYMBOLS

CHARACTER CODES ©

Ras
eow

ns
a?

Ns
tn
ie
d

; Reference 1
ROYAL AIACHRAFT ESTABLISHMENT

, oo Page 8
$20C CORAL COMPILER Version/Date 2 |

USERS MANUAL - Author L Grant

cr
 t
o

—

m
r
e

~ CORAL LANGUAGE DEFINITION

The general classification of the language
implemented is full CORAL 66 excluding recursion,
i.e. including:

table handling
bit manipulation
data overlaying
‘floating point arithmetic

plus the extra facilities:

bit and byte arrays a a,

left and right shifts

The following description assumes a knowledge of

the Official Definition of CORAL 66 (HMSO).

Section 1.1 describes the implementation dependent
‘features of the :language which includes an

expansion of areas of the Official Definition

where necessary.

‘Section 1.2 describes the extensions to the

language provided by the 920C Compiler.

' Section 1.3 defines the 920C CORAL language
symbols and character codes.

Throughout the following description the bit

numbering for a computer word isas in the Official
Definition, i.e. least significant bit being bit
O and the most significant bit being bit 17.

GEWP ROYAL AIRCRAFT ESTABLISHMENT
Reference 1.1

Page 9
az0C CORAL CORIPILER Version /Date 1

USERS MARUAL Author L Grant

p
e
r
a

|

n
e
)

7

a

ul

me
ne

CLARIFICATION OF THE OFFICIAL DEFINITION OF
CORAL 66

- The following description of language features
is simply a set of notes and should be read in
conjunction with the Official Definition from
which there is no deviation or addition unless
otherwise stated.

The following points appear approximately in
the order of Official Definition.

J

(GAP
Reference 1.1.1

ROYAL AIRCRAFT ESTABLISHRIENT
. Page 10

-$20C CORAL COMPILER Version /Date }

USERS MANUAL a Author L Grant:

ba
a

ea
rn
ed

if b
e
e

C
o

1.1.1

1.1.1.1

l.l.l.l.l

w
e
e

UNITS OF COMPILATION AND COMMUN TCATORS
(OD 2.2 and 9.1)

Units of Compilation

The 920C Compiler allows four distinct units of
compilation, thereby allowing separate compilation
of individual sections of a program which are link
loaded by the CORAL Loader prior to execution.

A unit of compilation is structured:

"CORAL! ; a | A

unit - see below) |

-'RPINISH'

and the paper tape must terminate with a halt code.

The unit of compilation can be arbitrarily split
into several paper tapes where each tape except
the last(which terminates with the 'FINISH' key-
word) must terminate with a 'HALT' keyword -
all tapes must have a haltcode as the last
character following the 'HALT' or 'FINISH',

‘The possible units of compilation are as follows:

A single program segment

An outermost block of a program may be compiled as
a separate unit for link loading with the
remainder of the program. Reference to Library

procedures within the segment is indicated by a
Library communicator (1.1.1.2.2) at the head of
the segment. Communication with the outermost
blocks of independently compiled segments is
indicated by a common communicator (1.1.1.2.1) at
the head of the segment.

The format of a single segment unit of
compilation is:

‘CORAL!

_ 'PROGRAM' programname
Library communicator; (optional)
Common communicator; (optional)
‘SEGMENT! segment name

Outermost block constituting segment body
'FPINISH'!

a

;

N
e
n
e
’

e
e
)

Ke
nn

el
,

bo
ai
na
d

Kr
ar

en
au

ae
”

Lu
mp

rs
on

t’

po
on
er

ed

we

er
ew

on
e

e
w
a
n

EAP . Reference 1.1.1.1.1
ROVAL AIRCRAFT ESTABLISHMENT

Page 11
$20 CORAL COMPILER .

™ Version/Date 2
EX L ;

1.1.1.1.2

1.1.1.1.3

‘in the Common communicator of a program and

. determine the runtime size of the Common area of

w
a
e

See also the example in Appendix EF.

A set of program segments —

A set of program segments, which may or may not.
comprise a complete program, may similarly be
compiled as a separate unit. As above, reference
to Library procedures is indicated by a Library
communicator and communication with other
independently. compiled segments or with different
segments in this unit is indicated by a Common

communicator.

The format of a set of segments unit of
compilation is:

'CORAL'
"PROGRAM! programname
Library communicator; (optional)
Common communicator; (optional). ©
‘SEGMENT! seginame
Outermost block constituting segment body;

SEGMENT! segNname
“Outermost block constituting segment body .
‘FINISH'

‘A Common segment

This merely contains the information contained

therefore compilation as a separate unit serves
no real purpose since it does not contain any
executable code. A possible use could be to

a program and the positions of items using the
Object Map facility (4.1.4.2) as it may be
loaded by itself.

CAE ROVAL AIRCRAFT ESTABLISHMENT
Page 12

USERS MANUAL

Reference: 1.1.1.1.3

Author | L Grant

|

(

1.1.1.1.3

(cont.)

1.1.1.1.4

‘The format of the Common segment unit of
- compilation is:

'CORAL'!

Common communicator

"FINISH!

A set of Library procedures

Library procedures are compiled as a special
unit of compilation to be referenced from CORAL
programs thus only requiring each Library
procedure to be compiled once and not each time
it is used. No Common communicator is allowed
(communication is via the parameters of the
procedures only) and the source is in the form
of a number of procedure declarations not
blocks. Several Library procedures may be
compiled within one unit of compilation.

The format of a set of Library procedures unit
of compilation is:

"CORAL '

‘LIBRARY' Libraryname
Library communicator; (optional)
Procedure declaration of library procedure;

°

Procedure declaration of library procedure
"FINISH!

The inclusion of a Library communicator is
necessary if reference is made from within this
unit to any Library procedure contained in a
different unit of compilation,

The declaration of a library procedure is
identical to that of any other procedure as
described in OD 8 except that the procedure name
is of the form

name/no.

where the no. is any number between 10 and 2000
allocated by the user for identification of the

fi
o

ii
f
e
e
d

ee

L
o
t

B
e
d

“| ;
|
|

GAP Reference 1.1.1.1.4

Page 13

"Issue" 3B/4

Author

ROVAL AIRCRAFT ESTABLISHMENT

9206 CONAL COMPILER |
USERS MANUAL : .

ne L. Grant
>

|
|
|

1.1.1.1.4

{cont.)

Lelel.2

~2.2.1.2.1 Common communicators

' eo 2

procedure. The name alone is used to call the
procedure within a program thereby allowing the
“user to have several versions of each Library
procedure, as each is updated, and to link load
the required version (the no. and not the name is
used by the 920C CORAL Loader for. linking purposes).

-Communicators

As mentioned above there are two types of
_ communicators, oo 5s . f

This allows communication between the outermost
blocks of a program and between separately
compiled segments whereby objects can be global.
and accessible to each outermoscu block. The _
structure and contents of the Common communicator
within.individual units of compilation of a
CORAL program must be identical.

The format of a Common commuuicetor is:

"COMMON! Commonname
(Commonitemlist)

The Commonitemlist is as defined in OD 9.1. |

The items in a common communicator are of two types,
‘declarations and specifications. The first
'category includes all types of data, and the
‘second. includes all 'places' that is procedures,
switches and labels.

1.1.1.2.1.1 Common Declarations

Items declared in common have the same semantic
status in all segments as they would have if
they had been ceéeclared in the outermost block of

those segments, but the data space to which they
refer is allocated in the ccmmon data area. Thus
it is unnecessary to declare such items within a
‘specific segment.

Reference Lel.l.l.4.

Page 13-1

| "Issue" 53/4

USERS, MANUAL Author og, Grant

ROYAL AIRCRAFT ESTABLISHMENT

- 9200 CORAL COMPILER

i
1

r
r

a

L
C
c
.

L

L
o

r
T

i

:

=

L.lel.2.1.2.

1.1.1.2.2.

Common Specifications

- A common specification contains only enough

information about an item to enable it to be

referenced correctly in all segments. It does

-not--create that item, and it is necessary that a

1.1.1.2.1.1.1. Common Switches

“name, e.g.

' gegments, the declaration will be of the form.

' treated exactly the same, semantically, as any

me
me

full declaration occur in the outermost block of

one,-and only one, segment of the program. The \

use of procedure and label specifications is \

adequately described in OD 8.3.3., OD 8.3.4., and

OD 9.1 - The use of common switches as described

below. Sea ee fae ,

A common switch item is a specification, and as

such requires only the presence of the switch

‘SWITCH' S1,S2;

specifies two common switches.

When one of these switches, say S2, is declared

‘in the outermost block of one of the program

‘'SWITCH' S2 := Ll, L2, L3;

The use of the labels in this declaration is

——

other use of them. Thus if the labels are not

set in the outermost blork of the segment containing

the switch declaration, they must be specified in

common. However, even in this case the commen

communicator does not specify any relationship

between the label and the switch.

Library communicator

This allows reference to:commonly used procedures,

avoiding recompilation with each program.

{

ROYAL AIRCRAFT ESTABLISHMENT (GLP
‘* . Reference 1,.1.1.1.4

Page 13-2.
620C CORAL COMPILER _ 7

. "Issue" 3B/4
= t

, USERS, MANUAL Author LL. Grant

m
e
e

The format of a Library communicator is:

LIBRARY ' Library procedure specifications;
e

2

'LIBRARY' Library procedure specifications

.. The specification of a Library procedure is iden-~_
tical to that of any other procedure specification
as described in OD 8.3.4 except that the procedure

_ name is of the form

Name/no.

for the reason described in 1.1.1.1.4.

The further communicators described in

OD 9.3 and 9.4, i.e. EXTERNAL and ABSOLUTE

“respectively, do not form part of 920C CORAL

because they serve no purpose since there is no

general operating system and it is not possible

to link load programs which have been produced

independently from the Compiler, with 920C
CORAL programs. (Note that [constant] allows

access to a core location where ‘constant’ is the

absolute address).

Jf

4

ROYAL AIRCRAFT ES) ABLISHMENT
Reference 1,3. L. a

. Page 14
-920C COAAL COMPILER. -

: “Tssve" 3B/4
3S MANUAL

USERS MARCA Author - L. Grant

C
4

o
y

i

“
4

—

a

L
o

C
o

-

“
C
L

1.1.2.3

me
me

Transfer of Control between Segments

-..0£-.e@ach segment.

The start of a program is considered to be the
start of the first segment loaded..

The compiler inserts a dynamic stop at the end
Therefore, in order to cause

execution to pass from one segment to another,

the first segment must contain a 'GOTO' statement
to a following segment. The Compiler considers
the ‘segmentname' to label the first statement
of a segment which can therefore be referenced
as a normal label ~ for reference between
segments it must be declared in Common.

€.9.-

"PROGRAM! X
‘COMMON' ('LABEL' SB, re i ae

‘SEGMENT! SA |
‘BEGIN!

|

\.
an |

“*GoTO' SB

‘END!

. "SEGMENT! SB

"BEGIN! 1

|
|
‘END!
'PINISH'!

ROYAL AIRCRAFT ESTABLISHMENT

Ch a oe ee | Pu +m th ae
SeGS CGRAL COMPILER

Reference 1.1.1.3

Page 15 > .

Version/Date 16/2/76
USERS, MARUAL Author Various

1.1.1.4

If the CORAL source is to be loaded asa ~— a
multilevel program (1.2.3.1) a further /
envelope is included around the set of segments
for each level, which is described in (5.4.4).

Object Code Limits on Compilation Unit Sizes ai

Due to the object code strategy of absolute
addressing of data, the following limits exist:

(1)

(2)

(3)

(4)

* (5)

A full description of the runtime storage and
object code strategy is provided in Chapter 5.

' program must be <16K and therefore if >8K

compilation unit must be <8K.

The data area generated by 1 CORAL

The executable code generated by 1 CORAL
compilation unit must be <8K,

The data area generated by 1 CORAL program
whether compiled as a whole or in separate
units must be <8K, since it must lie
within module 0. However, core locations
outside module O may be accessed as data
via indexed. variables or anonymous
references with large indices.

The executable code generated by 1 CORAL

must be compiled in sections to adhere to
(2).

The data area and executable code generated
by 1 CORAL program must be <16K although
any core locations above 16K may be
accessed via indexed variables with large
indices.

* Bot see EXTANDED LOADER manual, page 2.

) i)
r . Reference 1.1.2

GABE ROVAL AIRCRAFT ESTABLISHMENT ry Page 16 |
i | SzOc CORAL COMPILER Version /Date i

rm USERS MANUAL - Author L Grant “"

. 1.1.2 DECLARATIONS) _ CO - or oo

(1) The scoping rules implemented by the 920C ;
ms Compiler are as defined in OD 3 = labels and. -
i! variables are not allowed to have the same ;

-Scope, i.e. a label and an identifier cannot
es have the same name within a block. 7

= (2) The maximum number of declarations allowed a
m , in a data declaration list is 31. .

ry 7
wad a

7 7 7 i
om ‘

| } | Ls |
vad

| ~
Li

Lu

ft

La

|
“4 2 ;

|
Ls

La ,

|
iJ 7

|
LJ

4
d

J
_ Reference 1.1.3

ROYAL AIRCRAFT ESTABLISHMENT one

So oe Page 17
220C COR PAPILER a S20C. CORAL COR £ Version /Date 16/2/76

USERS, MARUAL Author : Various

1.1.3.1

First Biss Bits 27-10 of mantissa

17

. LL) Bit 9-0 of | .. Bits 5-0 of
word CH) its fo st) Sign

_ Lf /

w
e
n
 6”

NUMERIC TYPES (OD 4,1).

There are three types of number, floating point,
fixed point and integer, all of which are used: |
as defined in OD 4.1. The representation of ,
these numbers at runtime is described below
(bit O is the most significant bit of a word).

Floating Point

Floating point numbers are held in two words
thereby adhering to the standard Elliott
packed format. The mantissa is held in twenty-
eight bits of the first and second words
including the sign,and the exponent is held in
seven bits of the second word:

17 16 .O

word

16 16 5 Q
Second

mantissa | @xponent

(Bit 17 is always zero)

The range of a floating point number is:

~9-2410? 8 eno. <49+2%1078

GAP Reference . 1.1.3.2
ROVAL AIRCRAFT ESTABLISHMENT

~ Page 18
$20C CORAL COMPILER Version/Date 16/2/76

USERS’ MANUAL Author Yarious

a

o
e

a

1.1.3.2

1.1.3.3

Fixed Point

Fixed point numbers are held left justified
including the sign, i.e. the position of the
number is 17318-TOTALBITS , redundant bits are
held as zero: °

18- - 17-
Potal Total

17 : - Bits - Bits . Oo
b Ace,

Fixed number .
TB, FB) | 0 0

The range of a fixed point number is

2<Totalbits<18
~1023<Fractionbits<+1023

i

Integer

Integer numbers occupy the full 18 bit word as
normal, i.e. right justified.

17 Oo)

18 bit integer

Their range is -131072sI<131071.

N.B. An integer input in decimal’ must be in
the range ;

~131071s1I<131071

But an integer input in octal can be in the
range

400000 g<ts377777,

(-131072) ° (131071)

b
y
e

fig
 c

ow

jos
e

ee
d

o
y

—
—

j
Kge

ene
ned

ae

3

he
sw
in
d -

J

a

en
ew
s,

‘
i

He
en

an
 |

C
a
n
a
m
 #

'

We
ir
 m

on
se
ra
d

,
,

Ne
g
se

mn
mn

es
eo

r P

(GAtE . - Reference 1.1.4
ROVAL AIRCRAFT ESTABLISHMENT

. Page 19
32% APILER ' §20C CORAL COMPILER Version /Date 16/2/76

USERS. MANUAL Author Various

1.1.4

1.1.4.1

1.1.4.2

1.1.4.3

1.1.4.3.1

PACKED DATA (OD 4.4)

“Wordposition and Bitposition (OD 4.4.2)

The syntax for 'wordposition' allows negative
representation

i.e. Wordposition = Signed-integer

although the Official Definition states explicitly
that Wordposition is to be numbered from zero
upwards. However negative representation is
allowed to increase flexibility in the use of

tables.

Floating Table Elements

Floating table elements occupy exactly two words
and the wordposition in the table element

Geclaration refers to the first.

Results of Partword Table Element Access

(OD 4.4.2.2)

The type of the result of a partword table element
access is the type of the element. specified in the

table declaration, —

Signed Integer Partword Table Element
(l.e. Fractionbits not specified)

The result is an integer of width Totalbits and
right justified with the sign extended. Since —
integers are held in a full word and right
justified the result is actually an 18 bit integer
with ‘non- significant’ bits set to the sign.
Therefore the use of a signed integer partword
table element in an expression is the use of the
resulting 18 bit signed integer. For an example
see 1,1.4.3.5.

ROVAL AIRCRAFT ESTABLISHMENT
Page 20

$260 CORAL COMPILER Version /Date 2

USERS ‘MANUAL | "Author
L Grant

Sp
ar
en
nd

Reference 1.1.4.3.2

bea
ine

aun
cit

be

pa
ne
l

o
y
 A

—

a
n

L
H

c
o

4

re

Led

r L
o

—

{

1.1.4.3.2

°1.1.4.3.3

1.1.4.3.4

1.1.4.3.5

w
e
e

Signed Fraction Partword Table Element
{i.e. Fractionbits specified)

The result is a fixed number of the specified
scale of width Totalbits left justified,
including the sign, with non-significant bits
set to zero. Therefore the use of a signed
fraction partword table element in an expression
is the use of the resulting fixed number as if
it had been declared as a whole word element. For

an example see 1.1.4.3.5.

Unsigned Integer Partword Table Element
(i.e. 'UNSIGNED' and Fractionbits not specified)

The result is an integer of effectively width
Totalbits, right justified, plus a zero extended
sign. Since integers are held in a full word and
right justified the result is actually an 18 bit
positive integer. Therefore the use of an
unsigned integer partword table element in an
expression is the use of the resulting 18 bit
positive integer. For an example see 1.1.4.3.5.

Unsigned Fraction Partword Table Element
(i.e. 'UNSIGNED' and Fractionbits specified).

The result is a fixed number of the specified

scale of width Totalbits+1 left justified up to
a zero sign bit and with non-significant bits
zero. Therefore the use of an unsigned fraction
partword table element in an expression is the
use of the resulting fixed number as if it had
been declared as its equivalent whole word
quantity of Totalbits + 1. For an example see
1.1.4.3.5.

Example of Table Declaration containing Partword
Elements

'TABLE' X[1,3]
[A "INTEGER! 0; .

B 'UNSIGNED' (4) 1,14;

C (14,3)1,0 -.
D 'UNSIGNED' (7,0)2,7?
E (6)2,1 1;

! } Se

‘|
Bs
n

we

1 fen
 c

oe

i
i
d

Reference A
— (HAVE ROYAL AIRCRAFT ESTABLISHMENT 21 1.1.4.3.5
7 oe Page
nt $20C CORAL COMPILER Version /Date 2

aT USERS MARUAL Author L Grant

a]
m ed

m1 1.1.4.3.5 oe
L (cont.) An example of a table entry is:

m 17 16 15 14 131211 1098 76 543 2 10°

7 worn o [1] 1Jo] afo{ 12]. Jafo lolz |zlo]ol1 Jolt
. - —~— a
7 A

L Jl yOfl | Lyl |O}L For ofo} til] ldijoe rd. fi

B Cc

“rare | sg L 2 1 Lo} Of }-f1 4} 1 lo O}O ;1LjO | iqt yojo fiji jor

D E
Lo.

i. .
i The use of each of the partwords B,C,D and E in

an expression is the use of the following whole
- words :

I |
~ B +: Unsigned integer

rl 17. 1615 1413 1211 1098 765 43 21 0

: o}olololo}olo}ojo}o| ofojo jo} ilofi fa

C +: Signed fraction

| 17_ 16 15 1413 12 1110987.65 4 321 0

7 1} 0/2 folo}olz }1f2}21fod1j2]|afo fo} oo
i

L
Loo

_

Unsigned fraction

17, 16 15 1413 12111098 76 54 3 to

a)

Oo

OF,LJO;O}] OF LjO} 1lF1} Ojo ft ojo} ojo J] ofo fo

Signed integer

17 16 15 1413 1211109 87 65 43 2 1 #0

Lil ylfjl tii. j
i

oo
d

k
e

t
e

a
l

aw

© O t
e

t
-
4

©

CANE
. Reference

ROVAL AIRCRAFT ESTABLISHMENT
Page 22

20 CO! MPI bs) ORAL COMPILER _ Version /Date
USERS MANUAL Author .

1.1.4.3.6 =

.2

L Grant

Lu
nd

o
Y

|

o
t
 7

1.1.4.3.6

w
a
e

Restrictions on Partword Table Elements

(1) Signed . .

2<Totalbits<18 0 <Bitpositions 16

(2) Unsigned

_LstTotalbits<17 O<Bitpositions17

(3) If either (1) or (2) have Fractionbits
specified

~1023<Fractionbits<+1023

ang
ene

aat

id

>

“A
mr

ea
na

si
l

Pa 4
La
te

o
m
a
n

k
©

“
la
s

4
Ku
a
Ri
da

1 a
t Bas

e
ea

d
La
ca
n

Reference 1.1.5.

| RACRAFT ESTABLISHMENT | GA ROYAL AIRCRA l S - page 23

7 $200 CORAL COMPILER Version /Date 1

| USERS THARUAL | Author L Grant
is os,

im
{ ~ Led

- . , ‘

Li 1.1.5 OVERLAY DECLARATIONS (4.8)

4.1.5.1 Restrictions

|

(2)

(3)

(4)

qQ)

Certain restrictions exist on the method and use

of data overlaying due to the structure of the
CORAL language. . coe

Py

Data declared in a segment can only be overlayed
by other data declared in the same segment, and
data declared in COMMON can only be overlayed
by an overlay declaration in COMMON. Data
declared as an overlay can therefore be preset
in accordance with the usual rules.

Internal. procedure parameters may be overlayed
-in accordance with the usual rules but Common

and Library procedure parameters cannot be
overlayed.

The ‘Base’ of an overlay declaration can be a
formal value parameter of a procedure but for
other types of parameter it has no meaning and
is regarded as illegal.

The 'Base' of an overlay declaration can be an

unindexed array and it is the responsibility of
the CORAL programmer to ensure that it is a
meaningful declaration.

Data declared as an overlay will not be
overlayed by any succeeding declarations,
Thus the declarations:

‘INTEGER’ I,d;
‘OVERLAY! I 'WITH' ‘INTEGER' A,B,C;
‘INTEGER! K;

will not cause C to refer to the same location

as any other variable,

e
a
n

ae

n
a
e

_

i . . Reference 1.1.5.2 .. mq GA ROVAL AIRCRAFT ESTASLISHMENT | 24 oS 4
, : . Page ‘3 — $2Z6C CORAL COMPILER Version/Date 1

r | USERS MANUAL ~ Author L Grant | j
Tae

Ce

. ed ~~

m
a“ by ; af

1.1.5.2 Overlay of Floating Variables md

i The effect of overlaying a fixed or integer variable 4
ii onto a floating variable is that the overlaying a

variable occupies the same store location as the
a ‘first (most significant) word of the mantissa of the % | floating variable, A tog : . -

i It must be noted that overlay of a floating variable cy
7 onto a fixed variable could produce undesirable side i L 3 effects in that the programmer cannot always know 4

which variable the second word of the floating . m] variable is overlaying and writing to the floating F if variable could corrupt the program in an undefined wih
way.

i
“2 |

: id
-

: 7 = ad

~™ i:
| ead

tai

ion)

— | - - a)
. od

|
* 7 i
i

ry

4

GAP Reference - 1. 1.6
ROVAL ALRCRAFT ESTABLISHMENT 25

‘Page
$206 CGRAL COMPILER Version/Date

USERS MANUAL Author ——si&: Grant

1.1.6

1.1.6.1

1.1.6.2

1.1.6.3:

m
o
e

PART-WORDS (OD 6.1.1.2.2)

Bitposition

The bit numbering is as per the Official
Definition.

Floating Variables

Partwords of floating variables are not allowed. The
desired effect can be obtained by overlaying the
floating variable with two integers and extracting
the required partwords from the integers.

Result of Partword Access

As stated in OD 6.1.1.2.2, the result of a partword
access is an integer of effectively width Totalbits,
right justified, plus a zero extended sign. Since
integers are held in a full word and right justified
the result is actually an 18 bit positive integer,

17 6)

0) —————_- Partword value
a >

Totalbits

Therefore the use of the result of a-partword in
an.expression is the use of the resulting 18 bit
positive integer.

e.g. A 'FIXED' (15, 3)X variable has the bit pattern:

17 - 6 5-3 2— 0

1101210001 1 00 1:0 1 21/0 0 0
Ne

=e a

Totalbits

"Bits! [6,5 JX in an expression results in the use
of the integer:

17 + : , : 0

000000 00 0 0,0 32 1 0 0 1 0 21

Thi
pa

Ss is analaygous to the use of an unsigned integer
rd table element (1.1.4.3.3).

i

-EWO H
o

Reference 1.1.7
ROVAL AIRCRAFT ESTABLISHMENT

Page 26
S200 CORAL COMPILER Version/Date 1

USERS MANUAL . , Author L Grant

Bu
re

Da
ne
el

a

po
m

n
s

L
e

1.1.77

w
o
e

LOCATION EXPRESSION (OD 6.1.1.2.3)

The meaning and use of LOCATION expressions is as

described in OD 6.1.1.2.3.

Since absolute as opposed to module relative
addressing of data has been chosen as the object code
strategy of the 920C CORAL Compiler, all data
addresses are relative to the start of core. As a
result, the interpretation of both LOCATION and
ANONYMOUS REFERENCE are well defined irrespective of
the parts of the program, and therefore the
‘positions in core, in which they are used.

With regards to procedure parameters ~ LOCATION of
a LOCATION parameter is LOCATION of the actual

parameter and LOCATION of a VALUE parameter is
LOCATION of the local workspace location within the
procedure holding the value (5.2.3.2).

Lom
aeo

d
Pi

ca

ae
d

fale

Reference 1.1.8
ROYAL AIRCRAFT ESTABLISHMENT

Page 27 —~
SZGC CORAL CONMIPILER Version /Date Ll

USERS MANUAL Author L Grant

WORD-LOGIC (OD 6.1.2)

Word-logic operators operate. on integer and fixed
point typed primaries and the integer results of.
"inner' word logic operations. Word-logic operations
are not allowed on floating point items since they
occupy more than one word.

—
_
)
.

—]

GAP - Reference 1.1.9
‘ROYAL AIRCRAFT. ESTABLISHMENT

Page 28
GRAL COMPILED -§20C CORAL COMPILER Version /Date 1

USERS RIANUAL . - puthor ’ t Grant

__
]

—
Jo

o
d
.

E
o

n
i
e
)

C

1.1.9.1

EVALUATION OF EXPRESSIONS AND CONDITIONS
(OD 6.1.3 and 6.2)

“The following description uses the words 'term' and
‘factor’ as in the Official Definition:

A 'term' is an argument of + or-.
A 'factor' is an argument of * or /

General Algorithm

The algorithm used in the evaluation of the
following operations is not, in general, defined
by the Official Definition for: oo

(1) Addition, Subtraction
(2) Multiplication, Division
(3) Conditional expressions
(4) Conditions
(5) Untyped primaries

The only defined algorithm is that for the
evaluation of outermost terms where the required
type and scale is known. In these cases the outermost
terms are converted to the required resultant type
before the addition or subtraction is carried out.

The use of Numbertype in any context causes. the

' enclosed expression to be treated as outermost. .

An algorithm has been chosen to:

(1) Produce a consistent’ solution

(2) Utilise the 920C hardware operations

(3) Maintain maximum possible accuracy

(4) To overcome the fact that in the general
case the types of the arguments of an

operation and the resultant type may be
undefined by context: ,

e.g. (a) The argument of + or - are untyped-
primaries or the result is an untyped~
primary (can be defined by context).

(b). The argument of * or / are untyped-
primaries; the result may not have a
defined type.

4
 (oA P

. os Reference 1.1.9.1 ROYAL AIRCRAFT ESTABLISHMENT ; Page 29
* a fh FLAS S98 ER

: S20c CORAL EGMPILE Version /Date a

USERS MANUAL ~ Author L Grant

“7

om

4
e
y

a

oo

C
o

co
e

[
_.

1.1.9.1

(cont.)

m
a
e

(c) Conditionalexpressions have untyped
Unconditionalexpressions or Expressions.
The required resultant type is always
undefined,

(d) The Condition may consist of Untyped-
primaries; the resultant type is
always undefined.

The algorithm is as follows:

(1)

(2)

If the type of an expression is unspecified and
is not deducible from the context then it is
evaluated as floating unless all its terms are
of the same scale or all its factors are integer
in which case it produces a result of the same
scaling. Constants will be considered as having
any scale, i.e, they will take the scale most
suitable for their context.

This is applied to Conditionalexpressions,
Conditions and Untypedprimaries.,.

If the type of an expression is specified or
deducible from context then it is evaluated
to that type and care is taken to Maintain
maximum accuracy possible.

Thus for addition, subtraction the arguments
are converted to the resultant type before the
operation as for outermast terms. For
multiplication and division the compiler
automatically scales the arguments before or
after the operation to obtain the required
resultant type, if at all possible.

Example:

'BEGIN'

‘INTEGER' I,J ; (range -131072 to +131071)
‘FIXED’ (18,17)A,B; (range -1.0 to 0.9999)
"FIXED' (10,5)X,Y,2; (range -16.0 to 15.96875)

if 70.25} (initial values)
8;
3

A

I
J 2;

BAP ROYAL AIRCRAFT ESTABLISHMENT |
Reference 1.1.9.1

a Page 30
| a | $20C CORAL CGOMFILER Version /Date 1

7 USERS MANUAL : Author L Grant F

i _— i

4 ~ Led 7

| a

“3
(| 1 ° 1 . 9 s 1 ; . : :

| (cont.) Ll: X:= Atl; (expected result = 8.25) =

my “22: Br= I/J; ° ~(expected result = 0.25) “

L3: Y:= X*B “(expected result = 8.25 #*

| , | a
te L4: Z:= (A+I)*I/J; (expected result = same

i f |
\

so "END! °

w-
—_

_l

c
o

‘An explanation of the evaluation is as follows:

Ll:

- L2:

L3s

LA:

A and I. are shifted to type fixed (10,5)
and then added to give the expected result.

I will be divided by J to immediately give
a fixed (18,17) result as required.

X will be multiplied by B to give a fixed
(27,22) result. This will be truncated
at the least significant end to provide a
fixed (10,5) answer correctly. (Fixed
numbers left justified).

Since. (A+I) is untyped and they are both
not integer, each will be floated and a
floating addition executed. It will then
be floated and multiplied to the previous
result and then J will be floated and a
floating division executed. Finally, the
result will be fixed to the scale (10,5)
giving the expected result.

If the user wishes to avoid these floating
operations he would have to write:-

Z:='FIXED' {10,5) (At+I) * I/d;

“Reference 1.1.9.2
ROYAL AIRCRAFT ESTABLISHMENT . .

Page 31
§20C CORAL COMPILER Version /Date i.

USERS MANUAL . Author. L Grant

1.1.9.2 Scaling

Rescaling operations are performed according to the

algorithm in 1.1.9.1:

_ (1) For + and -~ the arguments are rescaled before
the operation and transferred into one of the

forms described in 1.1.3 with non-significant
bits removed.

(2) For * the arguments are rescaled after the
operation into one of the forms described in
1.1.3 with non-significant bits removed.

(3) For / the arguments are rescaled before the
operation to a double precision intermediate
form if necessary to prevent loss of
significance or overflow on the division and,
Similarly to above, after the operation into
one of the forms described in-1.1.3 with non-
significant bits removed.

NOTE: Care must be taken in choosing the scales
of arguments in expressions since the use of
widely differing fixed scales will cause loss
of significance, especially within
multiplication and division operations.

Under the normal algorithm operations involving
multiplication immediately followed by division,
e.g. (a*b)/c, are performed as a*b scaled to single
precision and then divided by c.: However, in order
to prevent loss of significance, since the result
of the hardware + and the dividend of the hardware /
could both be double precision, a special algorithm
has been incorporated which retains a double
precision intermediate result if a multiplicaticn
is immediately followed by a division and all
arguments, @.g. a,b,c,are of the same scale. If
the arguments are not of the same scale the normal
algorithm is used and the intermediate result is
truncated.

Reference 1. 1 -9.2
im ROYAL AIRCRAFT ESTABLISHMENT
oh ot 7 - . Page 31-1

92Z0C CORAL COMPILER
"Issue" 3B/4

iF USERS MANUA Author f. Grant
‘ ;

. wed

r
J

a

C

1.1.9.2.1 Scaling of Conditions

It should be noted that conditions have no
predetermined scale and will therefore, accordiug
to the algorithm of 1.1.9.1, be floated whenever
the two arguments of a relational operator are
not of the same scale. This will often be the
case when the arguments aré not integers, and if
floating-point evaluation is not required then ©

‘“.explicit typing should be used.

There is no requirement that all operands in a
multiple condition containing the boolean operators

‘AND' and 'OR' should be of the same scale. Each
relational expression is processed separately.

Py

GAP Reference

Page 32

Version/Date 1

‘Author —

1.1.9.3
ROYAL AIRCRAFT ESTABLISHMENT

S200 CORAL COMPILER

USERS, MANUAL
L Grant

1.1.9.3

1.1.9.4

(1.2.9.5

1.1.9.5.1

Compile Time Arithmetic

‘code:

and rescaling to floating

‘Operations (other than multiplication or division)
on integer and fixed constants are performed at
compile time and the results used in the object

e.g. (6+2) 'RIGHT'X

is computed as:

8 'RIGHT'X

Multiplication and division and floating constant
operations are always performed at runtime.

Overflow Checking

Overflow checking is only performed on floating
operations and the rescaling of a floating value
to a fixed or integer value, since this can be
effected without increasing the size of the object
code due to the method of Floating point processing
(2.3).

For all operations on fixed and integer quantities
it is the responsibility

of the CORAL programmer to ensure that the values are
in the correct range, otherwise overflow will occur
without warning.

bots

Rounding

On rescaling operations

In order to produce the most efficient object code
and since the 920C hardware does not round, the
object code generated by the Compiler does not
include any special code for rounding.

Therefore results of rescaling from fixed to
integer are truncated as follows:

€.9. 2.35 2, 2°7> 2

@.9.72+35-3, -2°7>=3

XeVYrwX

~xXey > — (x4t1)

cond

(EW? . , : Reference 1.1.9.5.2 .
-R@VAL AIRCSAFT ESTABLISNIAENT

Page 33
REIL & oy _ 920€ CORAL COMPILER Version /Date 46/2/76

USERS. MANUAL
Author Various

=

1.1.9.6

1.1.9.5.2 On Division

The 920C hardware always causes the result of a
division to contain bit 17. set to 1.

i.e, Let the correct result of */y be z

If result should be: odd even

zx > | zoe Hd Y ,

~X = -~ my, -(z-1)
Y ; .

However, the 920C Compiler has incorporated an
algorithm to produce the correct result - the
dividend is doubled and the quotient is halved.

It must be noted that in extreme cases this could
mean the loss of the sign of the dividend and
therefore produce corrupted results.

No such algorithm is applied to the division of
fixed numbers since bit 17 is rarely significant.

Order of Evaluation .-

The tightness of binding of operations is as follows

LEFT and RIGHT (equal)

MASK, UNION and DIFFER

* and / (equal)
+ and - (equal)

-As far as possible expressions are evaluated in the
order which produces optimum object code,

However, as stated in OD 6.1.3 function calls are
evaluated in the order in which they appear when the
expression is read from left to right so that
possible side effects caused by interaction between
them can be determined.

—_ - Reference 1.1.9.6
ROVAL ALRCRAFT ESTABLISHMENT oo

Page +34
oy Es frog Seg

S20C¢ con 3. COMPILER Version /Cate 1

USERS MANUAL Author _ -L Grant

I

e
s

—
]

|

e
q
 -
A

a

_
C

C
o

1.1.9.6

{cont.) Therefore, it must be noted that where:
-_ abtc . ne coe a .

may be evaluated ass

b*cta,. ,

fa + fb * fe

is evaluated as:

fa into wsa
fb * foc + wsa

Obviously nested function calls are evaluated in the
reverse order, i.e. fd(fe(ff(x))) causes evaluation
in the order ff, fe and fd.

It must be noted that the function calls in
expressions containing nested function calls are

extracted and evaluated before the expressions to
eliminate the overwriting of the parameter space if
calls to the same function are nested,

e.g. fg(fh+l,fg(x,fi+2) +3)
fh is evaluated into wsh
fi is evaluated into wsi

x is evaluated into parameters space of fg
ws i422 uw u it tt "

fg is evaluated into wsg ;
wsh is evaluated into parameter space of fg
wsgt+3 ol s : i w . tt not

fg is evaluated

Conditions are also evaluated from left to right
but only as far as is necessary to determine their
truth or falsity.

|

Kan
ias

t
{

Bu
ms
en

ig)
w
e
e
t

i
i

t

| r
e
r

ee
c
c

ro
n

i _ oe "Reference 1.1.10
ROYAL AIRCRAFT ESTABLISHMENT :

Page 35
GR MPILER -y 920C CORAL COMPILE Version /Date 2

USERS MANUAL
oh . Author — L Grant

P
e
r
e
y

1.1.10 CODE STATEMENTS (OD 7.5)

Instructions enclosed by 'CODE' '"BEGIN' and 'END!
consist of a-subset of SIR, the 920C SYMBOLIC
INPUT ROUTINE, and a general knowledge of this is
assumed. Code instructions are terminated by.
semicolons and their elements are separated by
commas to conform with normal CORAL statements,
otherwise there are no restrictions on the format.

’ No CORAL declarations or statements are allowed

within a CODE statement other than comments. A
_ code statement can only be used in the position of

a CORAL statement.

The general form of an instruction in a code
statement iss

LABEL: | /F, ADDRESS;

where:

LABEL: — Normal Label which is accessed within
(optional) the code statement or within the CORAL

source enveloping it.

Modification Bit
(optional)

F Standard 920C function code, i.e. 0-15

ADDRESS (1) Identifier - either
The name of an actual or formal by
value variable which is declared
within the CORAL source enveloping
the statement. (It cannot be the
name of a formal by location
variable). .

or

The name of a label declared within
the code statement or within the
CORAL source enveloping it.(F=7/8/9)

(2) Unsigned integer constant _
' The absolute address of the location

. to be referenced by this instruction.}!:

; Reference 1.1.10
AOVAL AIRCRAFT ESTABLISHMENT ” (ANE] 5 , Page 36

bP 260 CGRAL COMPILER ~
: SCE CORAL COP IL Version/Date 2

| USERS RAANUAL Author L Grant 7 if . .f

7 Sed -
7

| 3

| 1.1.10 | i
“(cont.) (3) Signed constant 4

A constant to be referenced and held .
[| in the object code as: i
Ll (a) A normal INTEGER if written as 2

an integer, e.g.+1234
| (b) A FIXED(18,17) number if written 7
i | . as a fraction, e.g.+*1234 é

'. No other types of constant are
oan allowed. os
LJ . |

The validity of a code statement is. the .
1 responsibility of the programmer - The Compiler _

Lf. provides only a limited number of error checks
LS (3.1) to allow maximum flexibility. Special care a
a must be taken over the use of the H-register which is
| assumed to be in absolute addressing: mode on entry to
Li and exit from a code statement.

| The syntax of a code statement is presented in -
LJ Appendix A.

ry

|

[~ i
if

| . boo :

[
|

co

-

i
an
e

7

(G mn . “a - Reference Lel.1l
ROYAL AIRCRAFT ESTABLISNMECNT

‘Page 37>
= ¢ RaPah ‘ . tr a fs @20C CORAL COMPILER Version /Dete 16/2/16

USERS MANUAL - Author Various

n
l

n
n
e
r

1.1.1

L.el.ll.1

- The seguence -of operations is as follows:

1.1.11.2

- (ii) The second expression e2 is evaluated to

FOR STATEMENT (OD 7.10}

For-elements with STEP (7.10.1)

The Official Definition was in fact in error when the 920C coR AL
Compiler. was written (although later issues of the 0.D. have
been corrected); so the following definition was used:

Let the element be denoted by

| @Vi= el 'STEP' e2 'UNTIL' e3

In contrast with Algol 60. the expressions. are
evaluated once only. - , ‘

(i) The first expression el is evaluated and
assigned to the control variable.

the scale and type of the control variable
and stored in the anonymous location v2.

(iii) The third expression.e3 is evaluated to
' the scale and type of the control variable

and stored in the anonymous location v3.

(iv) The value of the control variable cv is

compared with the limit value v3, if
(cv-v3)*v2>0 then the for element is
exhausted, otherwise

(v) The controlled statement is executed.

(vi) The increment v2 is added to the control
variable and the cycle répeated from (iv).

Note that if the control variable is subscripted
then the subscript will have been evaluated and
the LOCATION of the controlled variable held in Vl.

The control variable is allowed to be INTEGER, FIXED
or FLOATING, and to be a member of an array, but not
to. be a partword. It is recommended that only simple
integer control variables be used.

Entry of DO Loop

The language allows a GOTO statement to transfer control
into the controlled statement of a FOR statement. It
Must be recognised that this is dangerous since the
control variable may be undefined.

J
 (Atk ROYAL AIRCRAFT ESTABLISHRIENT

~ Reference 1.1.12

Page 38
Ase CFLSMAL ORAL ES : < .

SERS MANUAL - Author L Grant

1.1.12

m
a
e

PROCEDURES (OD 8)

(1)

(2)

(3)

(4)

(5)

'Procedures are declared and called as defined in

OD 8. The following points should be noted:

Answer Statement (OD 8.1)

The answer statement of a typed procedure
cannot be embedded in a nested procedure.

More than one answer statement may exist in
-a typed procedure and it is also possible to
exit without executing an answer statement by
jumping to the end.

Dimensions of Formal Arrays (OD 8.3.2.2)

If the Compiler encounters uses of a formal
array which attribute to that array
conflicting dimensionality an error message
will be output fo. 131) :

‘Non-standard Parameter Specification (OD 8.3.5)

This facility is not allowed.

Number of Parameters

The maximum of 30 procedure parameters are
allowed.

Scales of Fixed Parameters

The scales of fixed parameters are not checked
for a match between the specification and
‘declaration of the same procedure.

CAP 7 Reference 1.1.13
ROYAL AIRCRAFT ESTABLISHMENT .

Page 39

S26 S Be RA eg . 9 S200 CORAL COMP Version/Date ¢
USERS, MANUAL

Author L Grant

r

1.1.13

1.1.13.1

1.1.13.2

1.1.13.3

' Character is held in its equivalent upper case

‘then it is assumed to be 1). The full set of

LITERALS AND STRINGS (OD 10.3 and 10. 4)

Character Representation

In both literals and strings characters are held
in 7 bit ISO code form, i.e. the external ASCII
(1.3.2) code minus the parity bit. Any lower case

form.

Literals

Literals may be any legal CORAL character (1.3.1). The
method of obtaining other characters using the :
facility is described in 1.1.13.3.

Strings

A string is delimited by the 'quotes' ‘4#« ¢ >
and can contain any ASCII printing and layout
character. The quotes cannot be nested within a
string (unless it is a macro definition - 1.1.15.1).
Printing characters are stored within strings but
layout characters are ignored. In order to get
layout characters stored they can be represented by
an identifier, optionally followed by an integer,

within exclamation marks. For example, !L5! within
a string will be interpreted as five consecutive
linefeed characters. (If the integer is omitted

identifiers is:

S space (Normal spaces between words are included
without having to use the !Sx! facility)

carriage return
line feed-
form feed

Horizontal Tah
haltcode o
R
 B
n

@)

X followed by a decimal character representation
indicates the external representation of a character,
that is, the value of the tape code that would be
output if the string were punched out. The maximun
number of characters allowed in a string is 630.

As stated in the OD 10.4 a string is classed as an
unconditional expressicn and its value is its

address. Using this address the string characters
may be accessed. The runtime format of a string is:

(Ge? ROVAL AIRCHRAPT ESTABLISHIMENT

$20€ COGAL COMPILER

Reference

Page 40

Version/Date 2

4

USERS MANUAL Author

4

1,1.13.3
(cont.)

(6) Absolute address of 1

4 17 L079 a re)
No.words,n-1 No.string chars

; 17 11}.10 4 3 6)
2 Char 1 Char 2 Char 3 Shars

37 17 15) 14 gj} 7 lv i
Char3 Char 4 Char 5

4 -

Chars

5 6-10.

'
|

t
'

' '
i
\ !

| |
'

n-1 -

n

The contents of word O is accessed when
a string is used, i.e. the value of a
string is the address of word 1.

A | . Reference 1.1.14
(G iP ROYAL AIRCRAFT ESTABLISHMENT . ;

‘_ Page 41
i $208 CORAL COMPILER Version /Date ‘h

= USERS MANUAL Author L Grant

a a

(6 2.2.24 COMMENTS (OD 11.1) |

1.1.14.1 Comment Sentences (OD 11.1.1)
io!

A comment sentence may be written wherever it is
convenient, i.e. between CORAL symbols, and not

cm , just wherever a declaration or statement can appear.
| ; Therefore comment sentences may precede the outer-—

: most block of a segment.

1.1.14.2 Concatenation of Comments

The concatenation of comments in the following way:

COMMENT ; +)

my is legal.

—
—

e
H

p
o
e

L
o

a
—]

GAP ; Reference 1.1.15
ROYAL AIRCRAFT ESTABLISHMENT

.

“Page 42
§$20C CORAL CONIPILER Version /Date L-

(USERS MARUAL Author L Grant

—)

st
ed

r
s

p
o
s
e

—

1

1.

1.

1.15

1.1.15.1

~1.15.2

1.15.3

e
y

MACRO FACILITY (OD 11.2)

Macro Definitions

A macro definition is delimited by the quotes.
4< and >+ which may be nested. Any ASCII
character (1.3.2) may exist in a macro definition
and layout characters are significant.

With the exception of the circumstances described
in 1.1.15.4, macro definitions may occur in any
suitable position in the CORAL source (like comment
sentences). It must be noted that the scope of a
macro definition does not follow the block structure
but is always active until it is deleted.

Macro Deletions

With the exception of the circumstances described in
1.1.15.4, macro deletions may occur anywhere.

Macro Calls

OD 11.2.2 states that the actual parameters to a
‘macro call should be treated as strings of characters,
which are used to set up a ‘virtual macro body of
which the corresponding formal parameter is the name.
The analysis of an actual parameter as a string of
characters, however, poses a number of problems, since
the string delimitter (the comma or right parenthesis)
can occur. in a number of positions within the string
as well. An example of such a situation is

CALLMAC ((,+< CHARS)>+'COMMENT' THIS IS ONE,

OR MORE, PARAMETERS; (POSSIBLY THREE) ,

(CHARS [MORECHARS)])

It- has therefore been decided that only legal CORAL
symbols should be permitted as actual parameters, and
that the rules for their use should be as follows:-

(1) Only legal symbols are permitted.

(2) Comment sentences and strings are regarded as
single symbols and the occurrence of parameter
delimitters within them is not recognised.

ou
na

nd
t

——
hor

ren
ad

fea
ena

st
O
e

a
S
e

4.
F

| e
e

4

4 . , - Reference 1.1.15.3
. ROYAL AIRCRAFT ESTABLISHMENT me

. . : Page 43

Version/Date 1

Author L Grant

$2UC CORAL CORIPILER

USERS MANUAL

1.1.15.3 (3) The construction 'LITERAL' (C), where C is
(Contd) any single character, is treated as a single

- symbol. It follows from this that at any
point in the source 'LITERAL' (C) is also
regarded as a single symbol, and that the
entity between the brackets cannot be a macro
call. ,

(4) Nested round and square brackets are not
independent of each other. Thus [(CHARS))

is not regarded as a legal parameter.

(5) The characters comprising the symbols of
actual parameters are stored as read. Identifiers
that are macro names are not expanded, and macro
directives ('DEFINE' and 'DELETE') are not
recognised.

1.1.15.4 Macro Expansion

The process of setting up a macro expansion involves
creating virtual macro definitions, which, for the-
duration of the expansion, can be regarded as having
the same status as macros defined by the use of the
'DEFINE' directive. This gives rise to a number of
restrictions on the use of parameters. The rules

' governing what may occur within a macro body are
listed below. It should be noted that the error
Situations <that can arise are trapped at the point
of expansion, not definition.

“(1) A formal parameter to the current macro may have-
_ the same name as a previously defined macro.

While the current macro is being expanded the
previous definition of the parameter is.
inaccessible, but it is restored when the
expansion terminates.

(2) It is not possible to define or delete a name the
° current meaning of which is a macro parameter

of a macro currently being expanded.

(3) It is not possible to delete or redefine a name
which is the name of a macro currently being
expanded.

To
 .

Reference 1-1.15.4
ROVAL AIRCRAFT ESTABLISHMENT | ee

Page 44

. Version/Date 1

USERS MANUAL , - . Author L Grant

$200 CORAL COMPILER

\
t
e
t
)

—
—

co

L
o

1.1.15.4 (4) A macro, A, may contain a definition of
(Contd) another macro, B. If so, the definition of

=&B becomes active when A is called, and remains

“active after the expansion of A terminates.

(5) If one macro calls another, their formal
parameters may not have the same names.

(6) If a macro, A, contains a definition of another
macro, B, then the names of the formal parameters
of A and B may be the same provided that A
does not also contain a call of B.

1.1.15.5 Recursive Macro Calls

Recursive macro calls are not trapped where they occur
because under eertain circumstances it is permissible
to have a macro undergoing more than one level of
expansion at once. This situation occurs when a macro
has as one of its parameters a cali to itself.
Since expansion of the parameter occurs at the point
where it is used, and this is within the expansion
of the outer macro, the situation is apparently
identical to a genuine recursive macro call. However,
a recursive call will rapidly exhaust the core
available, and it is considered that this is a

sufficient error indication,

1.1.15.6 Nested Macro Definitions

A nested macro definition, as for an outer macro
definition, is valid-from the point of definition
until either the end of the program text is reached
or the macro name is redefined, or deleted.

OD 11.2.4 states that if a redefined macro is deleted,
it is the most recent definition which is deleted,
and the previous one is reinstated, where 'recent'
and ‘previous' refer to the sequence of the written
text of the program. However, if the redefinition
of a macro is nested within a macro which is not
called_before the deletion of the initial macro,
the terms ‘recent' and 'previous' have the opposite
meaning. ,

q

R
a
r
e

h
v
u

i
e
e

nn
 o
re

4

‘
L
e

i
a

ry Me
nd

mm

h
e
d

(n
w

A\ , Reference 1.1.15.6
ra ROVAL AIRCRAFT ESTAGLIOMMENT — 5 .
rt : Page 4

| S206 CONAL COMPILER .
“ Version/Date 1

ER cg .
rq, USERS MANUAL Author L Grant

2

. a4

2 1.1.15.6 e.g. “'DEFINE' A teeenene-a-->t; (*)
(Contd)

'DEFINE' Bo t<---------- 'DEFINE'A------~- >4;

| -'DELETE' A; (Causes * to be deleted)
r |

|

(| Note that for the most efficient use of Compiler
i data Space. macros should be deleted in reverse

order to their definitions.
ry

7

i

fod

LJ

|
Lu

|

‘Reference
ROYAL AIRCRAFT ESTABLISHMENT ; 46

- Page
SOS BA 9200 CORAL COMPILER Version /Date

USERS MANUAL Author

1.2

1

L Grant

1.2 CORAL LANGUAGE EXTENSIONS

This section describes the extra language
'£acilities allowed by the 920C CORAL Compiler.

_]

(ol _ Reference 1.2.1

Page 47 .

—Version/Date 2

ROVAL AIRCRAFT ESTABLISHMENT

820€ CORAL comMPt LER

USERS “MANUAL
Author L Grant

|

~ 1.2.1

3
 al
l er
e

SHIFT OPERATORS

The operators *RIGHT' and 'LEFT' are provided to
allow specification of right and left shift
operations. The results of the shift operations
are similar to the standard 920C shift instructions:

RIGHT: Arithmetic right shift (sign regeneration)
without rounding.

LEFT : Logical left shift with non-significant
bits cleared,

A shift operation is written:

x ‘RIGHT’ y

where

x is an integer or fixed point typed primary (shifts
on floating items are not allowed).

y is an expression whose value at runtime must be
-36<ys36 - outside this range the shifts will
have undefined effects due to the hardware.

y is rescaled to type INTEGER if not already of that
type but x is never rescaled before the operation.
The result of a shift operationis the resulting bit
pattern considered to have type INTEGER.

Shift operators have tighter binding power than the
Boolean operators UNION, MASK and DIFFER.

The syntax of the shift operators is described in
Appendix A.

Note: Since 'LEFT' includes a mask to clear
redundant bits from the Q but 'RIGHT' does not
(see 5.4.1.3)

A 'LEFT' B
and . A 'RIGHT'C where C = ~B

will not necessarily produce the same result since
redundant bits from Q will not be cleared in the
latter case. It is recommended that only shifts by
_positive powers of two are performed or alternatively

a 'MASK' operation is attached to the shift.

ni
te
s

a
w
d

i
j

tes
a!

rs Pa
ar

ae
d

“
T
O

Citi ROYAL AIRCRAFT ESTASLISHMENT

920C CORAL COMPILER

USERS MANUAL

Reference

“Page 48

_ Version /Date

Author

1.2.2

i)
“

L Grant —

|

w
e

|

—
d

—

~
c
o

{

1.2.2

1.2.2.1

BIT AND BYTE ARRAYS

ce
, er

me
me

A facility is provided for defining arrays of

elements of less than a full word in length - these
elements may be either a single bit or a byte
consisting of nine bits.

Bit and byte arrays can be used in the same way as any
other data array (OD 4.3) where the word ARRAY is
preceded by BIT or BYTE on the declaration.

The syntax is presented in Appendix A.

storage Space

Consecutive BIT and BYTE ARRAY “declarations are
not Closely packed and each array starts on a word

boundary (see below).

(1)

2.9.

17 16

BIT ARRAY

Storage space for a BIT ARRAY begins on a word
boundary with sixteen bits per word,
justified in bits 15-0 and it assumes element
O lies in bit 15 of the first word

be conceptual).

BIT ARRAY A({23:41]

15 14 13 12 1110 9 8 7 6

occupies two words:

5 4 3

right

2

(which may

a
oo Yoho

y

/ A
Le. o fo

iA
23 24 25 26127/28 29 Lo

e)

Yo oJ 32|-33 34 35 36

CHA
7| 38 39 40 41

Vy Ae Sf

“ae
fo Yo") 6/ A ? ‘o

O
N
N

; ° Reference 1.2.2.1 ROVAL AIRCRAFT ESTAGLISHMENT |
Page 49

a Ane,
: #20¢ corn RAL COMPILER Version /Date 2

USERS MANUAL Author L Grant

a
n

L
C
o

1.2.2.1

1.2.2.2

1.2.2.

(cont.) |

tw

(2) BYTE ARRAY

Storage space for a BYTE ARRAY begins on a
word boundary with two nine-bit bytes per
word and it assumes element O lies in bits
17-9 of the first word (which may be
conceptional).

@.g. BYTE ARRAY AL3:6] occupies three words:

17 16151413121110 9 8 7 6 4.
>

3 2
ololololololololoY A Lat

AL
olo

5 1

, C L
LAA LV TAAL LVI AAS

O
K

A
I
S

AAVVIAA?

Bit and Byte Array Access

The result of a bit or byte array element: access is
the positive INTEGER whole word with the bit/byte
at the least significant end, i.e. bit O or bits
8-O respectively. This corresponds to the part-
word access of an equivalent number of bits
(1.1.6.3).
be used as a partword reference
on the left-hand side of an assignment) or as a
typed primary with an integer value. The use of

bit and byte arrays is inefficient compared with the
use of whole word arrays (5.4.1.1).

Presetting of Bit and Byte Arrays

Both bit and byte arrays are preset by whole word
integer constants which hold the values of the 16 _
bits or 2 bytes for the word which is being preset.

A bit/byte array reference can therefore
(an integer variable

Sa
ne

ha
na
sn
l

Sa
nm

ed

Ve
re

na
?

ha
er
e

fa
ga
rn
nd

;
—

we
a!

Ve
vn

mn
aa

t
o
m
a

bne
ree

non
t

5 \n
at

et
en

as
t

ha
e
n
e
d

_

CAP ROYAL AIRCRAFT ESTABLISHMENT

_ $20C CORAL COMPILER

USERS MANUAL

- Reference

Page 50

Version /Date

Author

1.2.2.3

n
~

L Grant

1.2.2.3
(cont.) e.g. 'BIT'ARRAY'A[

17 16 15 14 13 12 11:10 9

4:40] :="OCTAL' (005252),
—TOCTAL! (125252) , "OCTAL' (125200) ;

8 7 65 43 21

oJ offofofofo/ rlofifo]f atolajofifofi

0 fo} riojafolaloliaftol irfolifoflailo}.2

ars To VaVa Voy o YO faftola jolijofijto |} a O A, (POA KAY Y

EAP Reference 1.2.3
ROYAL AIRCRAFT. ESTABLISHMENT 51

‘Page

Version/Date 1

Author L Grant

G20C CORAL COAPILER

USERS MANUAL

1.2.3

1.2.3.1

1.2.3.1.1

‘by the 920C CORAL Compiler.

_ conditional compilation facility (1.2.4) may be used

code is generated by the Compiler.

“segment must 'GOTO' the first. ('GOTO' first segment

w
e
e

RUNTIME FACILITIES

This section describes the runtime facilities provided

It must be noted that no runtime diagnostic checking
or tracing facilities are provided although the

to incorporate optional user diagnostics.

Multi-level Programs

A facility is provided for compiling multi-level
programs where the interrupt handling housekeeping

The operating instructions for loading and executing a

multi-level program are provided in 3.1.5.1.

A CORAL program may be split into segments which run

on different levels, a minimum of one segmerit per level,

and all levels must be present. As for a normal

program the same Common communicator must accompany

each unit of compilation and is therefore shared between

levels. The level upon which a segment resides is not

fixed until loading, and each segment should be written

as a normal segment - the segments of each level must.

be chained into a loop by making each segment terminate

with a 'GOTO' nextsegname;' (1.1.1.3) and the last

name; causes a level terminate and on interrupt

processing is resumed at the first segment. 'First'

refers to the order of loading and for clarification

of this with regards to compilation refer to 2.1.5.3).

The Loader embeds the segments into the interrupt

handling housekeeping code and no knowledge of this is

required by the user. (For information it is described

in 5.4.4). A multi-level program can therefore be

written in pure CORAL with no provision for interrupt

handling code other than segmenting the program

according to its levels of execution.

CORAL Code, i.e. Common procedures, should not be shared

between levels since 920C code is not re-entrant, and it

is the responsibility of the user to ensure that this

does not happen - no checks are performed by the

Compiler. (The user need not maintain four copies of

Library procedures, one for each level, since the Loader

will regenerate them as required). Similarly, care

she

Reference 1,2.3.1 el

Page 52 .

S206 CORAL COMPILER . Version/Date 16/2/76

USERS PAANUAL , Author | Verious

é

ROVAL AIRCRAFT ESTABLISHIAENT

om

1.2.-3-1.1

(contd)

1.2.3.1.2

et 4

must be taken in updating Common data which is

shared between levels.

The following information is provided for use in

specialised circumstances — it has no effect on the

object program and can be ignored if not required.

It is sometimes useful to distinguish between the

reasons for entering a program at level 1:

(1) Initial start of a program after loading.

(2) Re-entry via AUTOSTART after power has been

switched off and on: note that this does cause

the program to be re-entered at its Start, NOT 4

where it was when the power went off; because

9206 hardware does not provide the "power fail

interrupt" needed to implenent the latter.

(3) A top level interrupt.

For this purpose a flag, TOP LEVEL INDICATOR, has

been supplied by the Compiler which will automatically

contain the following values according to the above

conditions: :

+O Initial start on level 1
-~l AUTOSTART

+1 Top level interrupt

The position of this flag within the object code is ;

Module 0 lower bound + 4.

Tt is therefore necessary for the user to define

the macro 3:

'DEPINS! TOPLEVELINDT<absolute address of MCL + 4 >% ;

in order that the flag may be accessed mnemonically
within the CORAL program. The module O lower bound

is either the default value or the value specified

by the user on loading (2.1.5.2). °

For clarification of the routine storage of a CORAL

“program see 5.1.

Reference 1.2.3.2
Page 53 :

Version/Date 4

ROYAL AIRCRAFT ESTABLISHMENT

S206 CORAL COMPILER

USERS MANUAL
Author -L Grant

py
Lo

1.2.3.2

The 920C CORAL Loader calculates the runtime sumcheck

‘pal

Program Sumcheck

of the executable code of a CORAL program and stores
it in the object program for runtime sumchecking
within the user program. It has no effect on the
object program and can be ignored if not required.
The sumcheck together with the program code bounds
are provided in the six locations from the module 6)
upper bound (2.1.2. 2) downwards:

MOU © Module 1 code area upper bound (=M1U)
MOU-1 Module 1 code area lower bound
MOU-2 Module O code area upper bound (=MOU)

- MOU=3 Module O code area lower bound
_ MouU~4 -1
MOU-5 -sumcheck

The sumcheck is the negated accumulation, ignoring
overflow, of the contents of each word between the
upper and lower code bounds in each module and it is
accumulated as the program is loaded. The data area
of a program is not included in the sumcheck since
it contains an inseparable mixture of fixed preset
and variable non-preset data.

The following program should be used for the runtime
sumcheck:-

'BEGIN'. 'INTEGER!? SUM, ADDRESS POINTER, WORD POINTER;
SUM :=0;

'FOR' ADDRESS. POINTER := HIGHEST,
ADDRESS POINTER - 2 'WHILE'[ADDRESS POINTER] 'GE! 0
'po! . :

'FOR' WORD POINTER: = [ADDRESS POINTER - 1]
'STEP' 1 'UNTIL' [ADDRESS POINTER]

SUM :=SUM + [WORD POINTER];

'TF' SUM = 0
'THEN' sumcheck ok ...%

"ELSE! sumcheck fail:

'END!

bc
sw

ad

wa
d

Bee
ne

t
e
d

. . , ’ Reference 1.2.3.2
ROVAL AILACRAFT ESTABLISHMENT .

if Page 54
UI S200 CONAL COMPILES ; | . Version/Date 46/2/76

ry USERS MANUAL ~ Author Various

, og
~ ath: mo

i . .
1.2.3.2

(cont.) Where HIGHEST should be declared amongst the system

: macro i= - : r ;

L | 'DEFINE!' HIGHEST+< absolute address of MOU>t ;

Qo For clarification of the runtime storage allocation

L of.a CORAL program see 5.1.

| Hote that this Sumcneck facility has been desisned
- in such a way that, should a loader become available

which loaded above 16K or into more than 2 code areas,

[| NO change would be needed to the Sumcheck Frogram.
| ,
wd

7
LJ .

i s 2 : s

| | 1.2.3.3 Initialisation of Data Area
=

, Before loading the CORAL Loader sets the data area

[-to be occupied by the CORAL unit of compilation to
i .

LJ Zero. However the Extended Loader does not.
It is therefore recommended that any areas

r requiring initial values are either preset or are explicitly
assigned to.at the start of the user's program. Remember

4. - . 4 tthe . : .
that presets are only set, and the above initislisstion is
only performed, when the program is first loaded:
_to ensure that a program can be restarted without reloadings Lf

‘initial values needed by assignments.
it, locations used for variables should be given any

Pree A CPR AWE ERT
ESTA GLISEMEAY

Reference 1.2,3.4

Lx | . Version /Date 16/2/76
i

Author ,J.Froggatt

Ld 1.2.3.4
od a Let

| The 9206 CORAL Loader provides the ‘following two facilities
which are usually reauired of a real-time progrem;

_ especially when the program is to be used in an ‘application
i environment, without the normal 920C Control Console :~
7

* Self-Trigsering. A Loader option is provided, whereby,
[~ when the user's progrem has been successfully loaded,
i it starts immediately.

rq % Autostart. The multi-level housekeeping code (1.2.3.1.1);
| | includes the code required to make a program restart

i automatically after a power failure & restoraticn.

| j arti detect & distinguish these

tJ H event
i

: |
| é

- There are 2 limitations on the use of the Autostart
acllitys-

r

uJ * To use the Autostart. facility it is necessary to load :
even single-level prosrems in the multi-level mode of

r) the Loader, so that the housekeeping code is. inserted,

~ * The hous ;
ry proce 2 r :

after a i

S control i
° F

executed j r :
sone otnex

L| using 438

| Tous it is the Autoster ;

| Facility end written in “const 80 a8 to elso

be Sel f-
4

fl
| In those inetances where it is undesireable to run the ;

— has just been loaded, for exemple because {
_ ing it he e ected, :
if phe ve) :

= elf '

7 1 ps
_ SOM i
L_| WN Le i

There is no intrinsie reason on the 920C why either a

— program using cart s e multi-level, or that ‘
the use of ee ne Autostart facility
should he e these are due to the i

| 9206 CORAL implementation. :

programs will be |
ucinz Sal f- Autostart, and the i

single-level and
wh nad:

majority of off-line pr
at wy ate ie aS ee re a

t
e

ee

Reference 1.2.4 ROYAL AIRCRAFT ESTABLISHMENT 55
Page

; is] . Bs gE .
820 CORAL COMPILER Version /Date 1

USERS MANUAL - Author L Grant

@

1.2.4

A facility for allowin

on

CONDITIONAL COMPILATION

statements is provided.

Under conditional compil
the Compiler will compil
source which appears bet

g optional compilation of -

ation mode of operation
@ any statement in the
ween the characters % and ; aS anormal statement, Under normal mode of operation the Compiler Will treat such a Statement as a comment. With this facility the user may insert trace di

be used during develo

compilation.

e.g. A:=B;
% PRINTVALUE (A) ;
Cs=D;

Conditional Compilation:
B is assigned to A
The value of A is printed
Dis assigned toc

rectives in the source program to
pment and ignored when the program is working,simply by altering its mode of

Sf

Normal Compilation:
B is assigned to A
D is assigned to c

f.

ry

n a Reference 1.3
m GAR ROYAL ALRCRAFT ESTABLISHMENT 6
| Page 5
bo: $260 CORAL COMPILER .

+ “ PAL COM _ Version/Date 1
E : 7

7 USERS MANUAL Author L Grant
| = :

mo ~ ed

m
7 1.3 CORAL SOURCE REPRESENTATION

; This section describes the CORAL language symbols
[and physical character codes to be used in a
i CORAL program.

L |

|

m4

l

r iz
L

r]
Ls

‘4
a

‘
ay

_]

. Reference 1.3.1
ROVAL AIRCRAFT ESTABLISHMENT 57

‘Page
c L CON - $26 CORAL CG HPILER Version /Date 2

SULA
USERS MANUAL Author - L Grant

a
.

Le

LANGUAGE SYMBOLS

The full list of language symbols available ihn
920C CORAL is given below.
substantially the same as that given in APPENDIX 2
of the Official Definition.

AND
ANSWER
ARRAY
BEGIN

BIT
BITS
BYTE

CODE
COMMENT

. COMMON
CORAL
DEFINE
DELETE
DIFFER
DO
END
ELSE

EQ
-PINISH

digits 0 to 9

upper case letters A to Z

t+ * /

< $ = 2

()

C J

+ 4

<

{9

Language symbols that appear as words are delimited
by acutes (single apostrophe), for example 'BEGIN',

FIXED
FLOATING
FOR
GE

GOTO
GT
HALT

IF
INTEGER
LABEL
LE
LEFT
LT
LIBRARY
LITERAL |

“LOCATION
MASK
NE

OCTAL

a

a
g
 we
re

This list is

OVERLAY
PRESET
PROCEDURE
PROGRAM
RIGHT
SEGMENT
STEP _f
SWITCH
TABLE
THEN
UNION
UNSIGNED

-_ UNTIL
VALUE
WHILE

WITH

arithmetic operators

comparators

expression brackets

index brackets

string quotes

assignment symbol

subscript 10

Layout characters,

and they cannot be abbrieviated.

a

t
y
r
e

ba
3

ae

e
e
e
 |

b
y

os

_

7 h ~ Reference 1.3.1
| ROYAL AIRCRAFT ESTABLISHMENT

9200 CORAL COMPILER var
— ™ con LE Version/Date 1
i | ! I. USERS MANUAL Author L Grant

ar
(7

~ ne 1

ry
Li 1.3.1 |

(cont.) The following representations for non-alphanumeric

; language symbols are used:

4

Official | '. Alternative
Definition Representation . Representation

< < "LT!

s <= 'LE!
= = "EQ!

2 >= 'GE'
> > 'cT!

<> ; 'NE'
+ + $=
t he ; ;

} >t
to §& &

In processing CORAL source text, including code |
blocks, all layout characters are ignored and lower
case letters are read as upper case... (Within the

Macro Pass lower case-letters are interpreted as

upper case with regards to analysis but they are
output as lower case in the expended source).
Their use as literals and within a string is

described in 1.1.13 and within macro definitions

in 1.1.15.

v

J
p
o
n
e

(BA i ROYAL AIRCRAFT ESTABLIS SAMMENT | Reference 13.2 Wn 7 Page 59 to 62
$25C CORAL COMPILER

Version/Date 16/2/76
USERS MANUAL .

Author Various

|

__
d 1.3.2 CHARACTER CODES

The character code accepted by the Compiler is
ISO or ASCII .code with even parity in the eigth track.
Reference must be made to 1.3.1, 1.1.13 and-1.1.15
to determine which characters are allowed in CORAL
source symbols, literals and Strings, and macro
definitions respectively.

J : 1? ROYAL AIRCRAFT ESTABLISHMENT.
Reference 2

Page ©3

Version/Date 1

Author t, Grant

CHAPTER 2

920C CORAL COMPILING SYSTEM

2.1 COMPILER PROGRAMS

2.1.1 MACRO PREPROCESSOR

2.1.1.1 Description

2.1.1.2 Options

o2oL Description
2 Options

-3.1 Description

3.2 Options

-4.1 Description

2.1.4.2 Options

Description 1
2 Options

-3 Order of Loading

4

2.2 DIAGNOSTIC PROGRAMS

2.2.1 COMPILER DATA RETENSION

2.2.1.1 Description

2.2.1.2 Options

2e2e2 OBJECT DUMP

Description

Options

Position in Core

2

oe

2 N
N

Nh

N
N

NH

W
n

-

e

e

° °

. 2.3 FLOATING POINT LIBRARY PROCEDURE

2.4 INTERFACE WITH THE USER

-4.1 COMMAND LANGUAGE
.4.2 COMMAND FORMAT

2.5 MISCELLANEOUS NOTES

2

2

2.5.1 COMMON CHECKING

Library Procedure Loading

Grats Reference 2
ROYAL AIRCRAFT ESTABLISH TSENT 64

, , Page
mA Ft eZO6cC CORAL COMPILE | Versi on /Dat te 4 5/2/16

:: a fh :

USERS MANDAL . ; . Author Various

~
)

24
)

a

-
J

—

r
a

|

i a
)

—
-

iL
.

[

a

e
e
!

#<

920C CORAL COMPILING SYSTEM

The minimum configuration required for compiling a

CORAL program using the 920C CORAL Compiling. System
is an Elliott 920C with 16K words of core store; a
paper tape reader, a paper tape punch and a teleprinter.

(The standard minimum configuration for executing a

CORAL program is an Elliott 920C with up to 16K words
of core store where the data always resides in module
O and the code resides in either or both modules 6
and 1 (core above 16K can be used as indirect data

space, i.e. referenced by an indexed variable or an

anonymous reference with a.large index). However,

since the object code executes in absolute addressing
mode and does not contain. any of the special 920C
instructions, a program which will load completely

into the lower 8K, i.e. less than approximately 7K,

~may be executed on a 920B upwards compatable computer.
i ,

The 920C CORAL Compiling System consists of:

Five Compiler Programs:

Macro Preprocessor

.Pass 1A

Pass 1B

Pass 2

- Linking Loader

Two Diagnostic Programs:

‘Compiler Data Retention

Object Dump

A Runtime Library Procedure:

Floating Point Package

The structure and purpose of these programs is described
below followed by a description of the standard method

of interface with user.

All of the following programs run on level 1 and all

execute in absolute addressing mode except for the

Loader which contains some module relative code.

Ret icecream a RMA ENR EYRE AEN IRN SN PRCA, ANN te SPAR RMR AS MRNA AE MASE CME A AR FE RN NOR NO RAAT at a a I

| * Some of these limits are relaxed using the BATENDED) LoaDeR. |

Re

t BAN : ; c 2.1
ROYAL AIRCRAFT ESTABLISHMENT Feference

; . Page
8200 CORAL COMPILER } |

Version/Date 16/2/67
USERS MANUAL

Author | Various

I.

o
d

o
o

C
y

J
o
r

co

L
e

—

J
.

L
s

=

COMPILER PROGRAMS

The following description outlines the purpose and
options provided by each compiler program. It
assumes a knowledge of the remaining chapters of

_ this manual to avoid repetition. A diagram of
Compiler operation and a summary of Compiler input/

output are provided in Aprendices C and D.
respectively.

The action performed as a result of error detection
within each pass of the Compiler is described in
the relevant section below. However, there is a

class of checking which produces a warning message
“indicating that the user may have misused the
language but not seriously enough to affect the
compilation. In this case the compilation continues
as normal and it is the responsibility of the user
to determine if this is sensible and continue or
terminate compilation accordingly. Reference should
be made to Chapter 4 for all error ana warning

. Situations.

It must be noted that Passes 1A and 1B were
originally one pass, hence their names, but had
to be split due to their total size. The passes
were not, therefore, originally designed as separate
‘entities and the split was made as simple as
possible - unfortunately resulting in the production
of a large intermediate code in proportion to the
source,for transfer between the Passes.

ROYAL SIRCRAFY ESTABLISHMENT
Page ©©

Version/Date 1

Author L Grant

9200 CORAL COMPILER

USERS’ MANUAL

| Reference 2.1.1.

_]

__
_]

a

~T

(o
o

[—

a
o

MACRO PREPROCESSOR

Description

~The Macro Preprocessor is a separate prepass to the

Compiler which purely expands text.

It accepts CORAL source text containing macro

definitions, calls and deletions and produces

macro-free CORAL source text having expanded all

the macro calls and from which all the 'DEFINE'

and 'DELETE' directives have been removed (in so

doing it performs syntax analysis to CORAL symbol

level). All characters, excluding the 'DEFINE' |

and 'DELETE' and the +< and >+ pairs enveloping the

macro definitions occurring in the source are :

copied into the expanded source. Detection of an

error or warning situation will not inhibit the

production of expanded source and it is the

responsibility of the user to determine on completion

of processing whether the output is useful or not.

Execution of the Macro Preprocessor is optional and

only necessary if the CORAL source to be compiled

contains macros.

The rules. governing the position and contents of

macro definitions, calls and deletions (1.1.15) _

allow the Macro Preprocessor to be used as a general

software tool since it allows libraries of macro

definitions to be built up independently of the

CORAL programs in which they are referenced.

le
eo
nm
nn
s!

L
i
n
w
d

t
‘

M
e

ne
ew

ed

~y

a
 CAP Reference 2.1.1.2

Page 67 .

Version/Date 1

ROYAL AIRCRAFT ESTABLISHMENT

620C CORAL COMPILER
ry

.

hod 2S RAL ; ° :

i USERS MANUAL 7 Author L Grant

o . a

i .

Us MACRO PREPROCESSOR

i. 2.1.1.2 Options

' fhe following options are provided by the Macro

m Preprocessor using the standard user interface (2.4)

(1) Source Output Device. -

2 The expanded source may be output on the paper

ul tape punch, teletype or not at all (for checking

purposes). ; ,

|

»
i
d
 The default is the paper tape punch.

(2) Error Output Device.

The error and warning messages may be output

on the paper tape punch, teletype or not at

all. (It must be noted that with (1) and (2)

the expanded source and error messages will

be intermingled if the same output device is

requested). ,

The default is the teletype.

(3) Conditional Compilation (1.2.4).

If the conditional compilation language feature

is required it is necessary to specify this

requirement on the use of the Macro Preprocessor

in order that any macro definitions, calls or

deletions may be recognised between the % and ;.

If not specified such statements will be treated

as comment sentences. -

‘The default is that this option is not required.

(4) Source Checksum.

The option of reading each source tape twice

to perform a checksum test on it is provided

“with the Macro Preprocessor.

The default is that this option is not required.

Reference 2.1.2

Pege 68

-Version/Date 1

Author L Grant

. ROVAL AIRCRAFT ESTABLISHMENT

SZ0C CGRAL COMPILER

USERS. MANUAL

~
—

c
d

a
d

__
)

‘
~
~

H

re

C
o

C
w

——
-

c
o

a

R
e
e
t

o
o

L
o
.

ae

PASS 1A

Description

Pass 1A is the first main pass of the compiler, the
purpose of which is to syntax check the CORAL source.

It accepts macro-free CORAL source text for a unit
of compilation and produces an intermediate code
form of the source for input to Pass 1B, having
performed all the necessary syntax checking. Further
information is transferred to Pass 1B from Pass 1A
within compiler data tables. The detection of an
error will not cause the output of intermediate code
to be inhibited and processing will continue in order
that the intermediate code may be submitted to Pass 1B
for semantic checking.

Execution of Pass 1A need not be preceeded by
execution of the Macro Preprocessor unless the CORAL
source to be compiled contains macro definitions,
calls and deletions.

[i\ q PAA Ee Reference 2.1.2.2
a ROYAL ATRCRAFT ESTABLISHMENT

Page. 69
| 920 OBAL COMPILER - ; Version/Date 16/2/76

_ * USERS MANUAL , - Author Various

nz
a

'
o PASS 1A ee ed
i | . : : se

2.1.2.2 Options |
m
- whe following ¢ options are ‘prov vided by Pass 1A using

. the standard user interface (2. 4)
an Se ,
in (1). Intermediate Code Output Device.

m The Pass 1A intermediate code may be output on
u | the paper tape panch, or not at all (for checking

purposes) . . OS
Py

= The default is the paper tape punch.

a , |
L :

(2) Error Output Device.

Ms The error and warning messages may be output on
m4 the paper tape punch, teletype or not at all.
| (It must be noted that (1} and (2) cannot be

requested for the same device).
C4 .

| The default is the teletype.

i (3). Conditional Compilation (1.2.4)
| : .

: If the conditional compilation language feature

yoo is required. it’ is necessary to specify this
Lo requirement on the use of Pass 1A.

| ‘The default is that this option is not required,
Ca .

(4) Source Checksum.

(5)

The option of reading each source tape twice in
order to perform a checksum test on it is
provided with Pass 1A. ,

The default is that this option is not required.

Object Map. |

The option of providing a map of the object coce

from Pass 2 during production of the relocatable

binarv must be specified on the use of Pass 1A. |

A description of the format of this map is provid

in 4.1.4.2. (The map may be produced on the paps

tape punch or the teletype.

_

“ROYAL AIRCRAFT ESTABLISHMENT
Reference 2.1.2.2

a Page 70

Sz0C CORAL COMPILER "Tesue" 38/4

USERS MANUAL
Author L Grant

y
e

7 a

~
a
e

—
L

i

ce

2.1.2.2

(Contd)

PASS 1A

(6) -

(7)

Floating Indication.

The option of providing an indication whenever

"the- compiler invokes a rescaling operation to
floating point format within Pass 1B is

available. (The algorithm for evaluating

expressions (1.1.9) may cause floating point

processing to be invoked whether there are

any floating items in the CORAL’ source or not).

The default is. that no such indication is

required.

Stack Positioning Commands.

Three commands are available to give the user.

the option of repositioning the compiler stacks

1f£ required. The default values. are set to

enable the compiler to run in 16K with the
maximum data space, and are

- 14710 Stack start address, SSS

Stack length, SSL , 1670

Stack size difference, SSD _ 400

In general, to run the compiler in more core

the stack length option will be changed. The

other two options are less likely to be used.

‘The stack size difference is the amount by which

.the stacks must be contracted at the end of

. Pass 1 to make room for the code of Pass 2 to be

loaded, and obviously depends on the value of the

stack start address.

wi
r

BAP Reference 2.1.3

Page 71

Version /Date L-

ROYAL AIRCRAFT ESTASLISHMENT

S20C CONAL COMPILER

Ene {UAL USERS MANUAL Author L Grant

2.1.3

2.1.3.1

PASS 1B

Description

Pass 1B is the second main pass of the compiler,
the purpose of which is to semantic check the CORAL
source. "

It accepts the intermediate code from Pass 1A of a
unit of compilation and produces a further intermediate
code form for input to Pass 2 having. performed all
the necessary semantic checking. Further information
is transferred to Pass 2 within compiler data tables.
The detection of an error during Pass 1B or previously
in Pass 1A will inhibit the production of intermediate
code from Pass 1B but will not stop the processing of
the intermediate code from Pass 1A in order to detect
as many errors as possible in one run.

Execution of Pass 1B must normally be preceeded by
that of Pass 1A due to the passing of information in
compiler tables.

Reference 2.1.3.2
(| GAR ROVAL AIRCRAFT ESTABLISHMENT

Lh Page 72
GC COSA Mi a7 .

— , $2 OBAL ce iPILEE ‘ Version /Date 1
i. a . ne . . .

i. USERS MANUAL Author L crant

4 . a

|

ry . ;

ie PASS 1B

cm 2.1.3.2 Options

mo There are no specific options provided by Pass 1B -

4 the output of intermediate code and error and warning

; | messages will be automatically produced on the

v3 devices specified for that of Pass 1A.

Mm . . . iJ . -. a

| The floating warning message option is requested in

Pass lA (2.1.2.2).

O. |

u

cy
rod

Z
O. |
Lod

P)

i-

rm)
i |
Co

co

i |
La

‘7
Lod

TY

(T
r

7

eference 2.1.4 . ROVAL AIRCRAFT ESTABLISHMENT :
a Page 73

S200 CGSAI “Sy MPHLE

VBAL COMPILER Version/Date 16/2/76
USERS MANUAL

Author Various

Ka
ca

ca
g

v
d
.

PASS 2

Description -

‘Pass 2 is the third main pass of the compiler the
purpose of which is to generate object code.

It accepts the intermediate code from Pass 1B of a
unit of compilation and produces relocatable binary
of the object code for input to the Loader. Pass 2?
also provides (optionally) a map cf the object
program (4.1.4.2).The detection of an error, of
which there are very few, causes processing to halt
Since it will be irrecoverable from the Compiler's
or User's point of view. If any error has been
detected during Pass 1A or Pass 1B, Pass 2 should
not be executed and will itself report an error if
this is attempted.

Execution of Pass 2 must normally be preceeded by
that of Pass 1B due to the passing of information

'in compiler tables.

Note that contrary to any other information transferred
between compiler passes each relocatable binary tape
must be input to the Loader backwards, i.e. the
character produced last from Pass 2 must be input
first to the Loader.

In practice this will usually be achieved by winding
up the relocatable binary tape, produced by Pass 2,

backwards, when it is first produced, then writing its
name on the "ontside” end; so that it can then be read
by the loader (possibly frequently, as in the case of.
a "LIBRARY! tape) without further complication.

:
a

N
e
a
l

Mea
nt

gin
d

ry
‘

S
c
e
n
a
 nt
t

Ea
Ce
a

cc
me

an
el

n
e

L
a
n
e
y

Re
ct
an

se
ed

C
d
 GAP

~~

Reference 2.1.4.2,

Page 74
2 4 TY > FEB SOQ LT

8206 CORAL COMPILER Version /Date 1

‘USERS MANUAL author «dL Grant

ROYAL AINCRAFT ESTASLISHMENT

J
aa
n}

2.1.4.2

PASS 2

Optioris

There are no specific options provided by Pass 2 -
the output of relocatable binary and error and
warning messages will be automatically produced on
the devices specified for that of Pass lA.

Pass 2 provides a map of the object program if
requested during the use of Pass 1A(2.1.2.2).

fad

J
_]
 GAP - Reference 2.1.5

Page 75

Version/Date 16/2/76
:] , :

USERS MANUAL Author

ROYAL AIRCRAFT ESTADLIS SHMENT

S28 CORAL COMPILER

Various

e
e
e

C
e
n
 ca

l

ao

ea
nam

e
n
a
 RA

E
AEE

 S
E
U

—_
]

c
o

e
r
)

C
o

l
o
a

[

LOADER

Description

~The Loader links together independently compiled

CORAL units of a program into an executable program

in core. It is purpose-built and therefore does

not allow CORAL units of compilation to be linked

with any other type of program unit produced via

another compiler or assembler.

The Loader accepts relocatable binary from Pass 2

of one or more units of compilation which it link

loads producing an executable program in core. As

the loading process is performed information on

the utilisation of core is printed on the teletype

(4.1.5.2)

During loading detection of an error which is not

considered disastrous does not. inhibit the loading

process and execution of the object program is at

‘the user's discretion. However, an irrecoverable —

error will cause the loader to halt. It must be

noted that an incomplete program, i.e. a subset of

the units of compilation comprising the whole program,

may be executed similarly at the user's discretion.

Execution of the Loader need not immediately follow

that of Pass 2 since no information is transferred

- other than within the relocatable binary.

t

e
a
l

Ma
es

wa
lt

e
f

m
o
}

Br
er
a

is
si
h

hac
eas

 p
oe!

’

pe
d

~
h
u
,

Reference 2.1.5.2

Page 76

Version /Date

Author —

16/2/76

Various

e
s

|

7
L
o

a
r

—

a

r
r

L
e

Ld

{

2.1.5.2

LOADER

Options

The following options are provided by the Loader

using the standard user interface (2.4).

(1)

(2)

(3)

those output on the teletype by the Loader,

Small Loader Option

Extended Loader

only mentionned

i app e a Mahan Ory

the paragraphs & eGlving ey

This facility became obsolete when the

became availacle; ana its existance is

here to avoid penumbe ring

cross-references.

The default is that the reduced Loader is not

required.

Radix of Input/Output.

The radix of the numbers input by the user on the

teletype during the specification of options, and

i.e. core map, entry point and error numbers,

may be either octal or decimal.

Te default is octal.

Core Module Bounds.

It is possible to instruct the Loader to reserve

areas of core at either end of each core module

and thereby load the object program between them.

If the Loader is requested to reduce the space ~

it has automatically reserved by default it

reverts to the default values.

]

a
e
s

d
l

CAP ROYAL AIRCRAFT ESTABLISHMENT
Reference 2.1.5.2

) - Page 77
eS = n0g8a . :

USERS MARUAL : "Author, | _ Various

Ne
tt

rc

|

c
o

L
e

221.5.2

(Contd)

LOADER

(4).

(5)

The defaults are:

Module Y Lower Bound: 10544 55616
| : 17745g - 81500 Module @ Upper Bound: g

Module 1 Lower Bound: 20000g — 81924,

‘Module 1 Upper Bound: 34563, T4107,

N.B. It is not possible to force the whole >

program into module 1 since data must
' reside in module O although code may

reside in either module O or l.

See 5.1 for the runtime storage allocation of

a CORAL program.

Absolute Binary Dump.

The option of producing an absolute binary dump

of the object program is provided. The dump is

in the standard A.C.D. 900 Series 18-Bit Binary

Tape Format 1/4/70 for future loading using
the hardware initial instructions.

The default is that this is not required.

Program Level Number.

The Loader provides the option of loading multi-
level programs (1.2.3.1) whereby it creates all

the interrupt handling house-keeping code which

‘envelopes the segment(s) on each level of the

program. The order of loading the units of

compilation of a multi-level program is described

in 2.1.2.3.2 and the interrupt handling house-

keeping code sequences are listed in 5.4.4.

The default for the level of a unit of compilation

when loaded normally is level 1 and therefore a

‘single level pregram will always run on level l.

CAP ROYAL AIRCRAFT ESTABLISHMENT
Reference 2.1.5.2

: Page 78 .
~ 300 CORAL COMPILER .

ORAL Version/Date 16/2/76
eme OL BREWS

| USERS MAN UAL Author Various

. 4
mM 7 >t, 5

[LOADER
L | 7 .

(2.1.5.2 (6). Self-triggering
[| (Contd, .
i The Loader provides the option of producing

: a Self- triggering object code program
[on the absolute binary dump.

os The default is that this is not required.
| | .

ry (7) AutoStart

. No specific option is provided in the Loader to

— request the Autostart facility: the code needed ‘is

| automatically inserted in the housekeeping code of

7 multi-level programs; for it to function correctly

, Self-triggering must also be selected.

| See 1.2.3.4.

=

|
|

LJ.

|
LJ

Cy

|| |

7
Lo

|
Lo

Us

=

L
e

= Reference 2.1.5 ,3

Page 79

"Issue" 2B/4

Author lL Grant

| ROVAL AIRCNAFY ESTABLISHIVIENT

$20C CORAL COMPILER

USERS MANUAL

2.1.5.3

2.1.5.3.1

2.1, 5.3.2

w
e
e

‘LOADER

‘Order of Loading

Normal (single level) program.

The relocatable binary paper tapes for the units of
compilation may be loaded in any order excluding

‘the library tape(s) which must be loaded last. The
entry point of the program is assumed to be the first
seamect . ompiled of the first tape loaded. The address ,

a’ of this is specified by the loader when: loading is comp

e.g. Segment tape 1 + Program entry point
. Segment tape 2

: |

:

Seginent tape N

Library tape(s)

Multi-level program.

The relocatable binary paper tapes for the units of
compilation of a multi-level program must be loaded
together for each level but may be in any order
within the level followed by the library tape(s) for
that level. (The levels may also be loaded in any
order). The same library tape(s) may be read for
each level and the Loader will automatically create
& copy of each relevant procedure per level upon

" which it is used. The entry point of a level is the
first statement .of the first segment compiled on the fi

‘tape loaded at that level; the entry point of the progr
is assumed to be the entry point ot level 1
(specified by the Loader on completion of loading).

' @.9. Segment tape 1, level 1 <level 1 entry point
(= program entry point)

4

Segment tape N, level l
Library tape(s)

Segment tape 1,level 2 +level 2 entry point
. ’ o .

Segment tape N, level 2
(Library tape (s)

te

wi
.

ROVAL AIRCRAFT ESTADLISMMENT

($200 CORAL COMPILER
Page 80

in . "Tscue" 3B/4

, USERS MANUAL Author L Grant nm 7 vs .

a
oe

LOADER .

| 2.1.5,3.2 Segment tape 1, level 3 «level 3 entry point
(Contd) ~4

iy t

| Segment tape N, level 3.
. Library tape (s)

| Segment tape 1, level 4 +level 4 entry point | : ‘ . , . . . mo _ t .

' . ry Segment tape N, level 4
| Library tape(s) ,

L

a
L |

i:
is

7
i

if

Ij

|
i

f }

t.

|
|

‘Referenca 2.1.5.3.2

a
n

Reference 2.1.5.4

Page 81 ; |

Version/Date 16/2/76

USERS MARU AL : Author —s- Various

ROYAL AIRCRAFT ESTABLISHMENT
Te Teel elaVil atete Cute

$20 CGRAL COMPILER

we
d

bs
f.

4
ac
ci
on
?

|

2.1.5.4

LOA

Library Procedure Loading

DER

‘As

loaded after all units of compilation for the
current level. The content of a Library tape

is
a scan of each Library tape and loads only those

procedures which have been referenced by previously

loaded units of compilation, i.e. having the same

Library procedure number. Any number of Library

tapes may be scanned until all references are

satisfied. The Loader outputs a description of

the Library Procedures loaded (4.1.5.2).

The following points should be noted:

(1)

(2) Since communication with a Library procedure

(3) The Library tape supplied with the 920C CORAL

(4). Only Library procedures which are called by

described in 2.1.5.3 the Library tape(s) are

as defined in 1.1.1.1.4. The Loader performs

The Loader performs no check on duplicate Library

numbers and simply loads the first procedure

encountered with the required number (last

compiled since loading backwards) ~ all
subsequent procedures with the same number

being ignored. This therefore allows the

user to redefine Library procedures.

is via the Library procedure number and not

the name, reference to different procedure

names which have the same number will cause

calls to the same procedure at runtime.

Compiling System, CAPQF, contains the Compiler

Floating Point Library Procedure (2.3) which

has the Library number l. The user should
therefore avoid the use of this number since

redefinition of the procedure would no doubt
have disastrous consequences.

previously loaded units of compilation are loaded

~ redundant specifications at the head of a unit

of compilation do not cause the respective Library

procedures to be loaded.

Pre

ul
ey

Sa
ga

o
d

d
So
na
l

ho
me
d

b
i
d

Gl? “Reference 2.2

Page 82

_ Version/Date = 1

Author 4 Grant

ROVAL AIRCRAFT ESTABLISHMENT

9
 B20€ CORAL COMPILER

USERS. MAMUAL

é

a
y

DIAGNOSTIC PROGRAMS

The following programs are off-line programs
supplied as part of the 920C CORAL Compiling
System to aid in the development of CORAL
programs.

CAE
“t.

Reference 2.2.1

Page 83

Version / Date 1

 ROVAL AIRCRAFT ESTABLISHMENT

$20C CORAL COMPILER

on

Retention
Program N.B. The Compiler
(Reload) performs no checksum _

calculation on the Y

dumped tables and mis-

punched tapes. could

cause undefined results. — Compiler
Tables

| USERS MANUAL Author L Grant ;

~.¢ - 7

mo ~ ahd

| | nm

| 2.2.1 COMPILER DATA RETENTION fo

_ 2.2.1.1 Description -

| | mat ~
Lj Since Pass 1A and Pass 1B transfer information in

compiler data tables to Pass 1B and Pass 2 respectively, “

i the three passes, Pass 1A, Pass 1B and Pass 2 must .

L normally be run consecutively for the compilation of

: a CORAL unit without interruption. However, in iy

m order to provide the facility of running several units

| of compilation through a single pass, e.g. Pass 1A

.- for syntax analysis, before proceeding to the next

on pass, the Compiler Data Retention Program is ~

| supplied which: ~

: (1) Dumps the compiler data tables to the paper tape ~

| punch following compilation through a pass, to be .

L! retained by the user together with the relevant

intermediate code. oa

| (2) Reloads the dumped compiler tables from the paper a

= tape reader before execution of the next pass.

[| Therefore, with the use of this program Passes 1A, 1B

| | and 2 can be made independent of each other.

co The following diagram summarises the operation of the :

7 Compiler Data Retention Program: ~

7 Compiler ~

| Tables -

| -
= WA “

a Compiler Data .

| Retention
i Program

(Dump) e

is Compiler
Tables

EL

a Compiler Data

Reference 2.2.1.2
ROYAL AIRCRAFT ESTABLISHMENT

2 RAL COMPHL | 820e CORAL aad PILER . Version /Date 1

| USERS’ MANUAL a Author LL Grant

m4 ~ a4

fo
COMPILER DATA RETENTION

— 2.2.1.2. Options : oo °

The only option provided by the Compiler Data
_ Retention Program using the standard user

interface (2.4) is whether the dump or restore
of the compiler tables is required.

[| The default is that neither is required.

ry i
Li

.
a

lo

[|
LU

(|
Lu

[| .

LJ

|

Li

a

a

I
 ROYAL AIRCRAFT ESTABLISHMENT

Page §&5
: SRAL COMPILES ion / 920C CORAL COMPILER Version /Date

USERS MANUAL ~ Author

“Reference 2.2.2

16/2/76

Various

a

|

—
_

a

=

OBJECT DUMP

Description

In standard 900-Series terminology this program is not, as

one mizht have thought, a Binary DUMP program, it is a

STORE PRINT program giving Telecode output.

The Object Dump Program is a program completely
independent of the rest of the 920C CORAL

Compiling System. It is for use at run time to
provide a readable dump of any requested areas
of the 920C core store in octal, decimal and
instruction word format. The format of the
dump is described in 4.2.2. It can be used
in. conjunction with the object map produced by
Pass 2 to determine the contents of the locations
constituting a CORAL program,

The following diagram summarises the operation
of the Object Dump Program:

Core

Object
Dump

‘a

Program

NV

Area of

Core

ROVAL AIRCAAFT ESTABL ISHMENT Lo) - Page 86
$20c C RAL MIPILER .

. ° cor LE _. Version/Date 1

Ls USERS MANUAL . Author L Grant

. “64

Ly

i. . .
7 OBJECT DUMP

rT 2.2.2.2 Options
i!

The following options are provided by the Object.

m Dump Program using the standard user interface (2.4).

L|
i (1): Radix of Input -

- The radix of the numbers input by the user on

L the teletype during the specification of
options may be either octal or decimal.

O] -The default is decimal.
i.

(2) Core Module Numbers.
=

The number of the core module to be analysed

- _™may be specified.

~ The default is module 0.

L
(4) Core bounds.

[| The bounds ‘tinclusive) of the area. to be

i dumped within the specified core module may

(5)

Note:

be specified.

‘The defaults are -
Lower bound: ae)
Upper bound: @)

Dump Output Device.

The dump may be output on the paper tape
punch or teletype.

The default is the teletype.

If the core module and core bounds combination

specifies a non-existent core address the 920C

computer will halt. There is no error check

in order that this program can be used on

different machine configurations.

Reference 2.2.2.2

ha
se

Py ‘\ , z Reference 2.2.2.3 .

| RGYAL AIRCRAFT ESTABLISHMENT ‘

‘ . . Page 87
be a 5 RS ED

.

ia . S20€ CORAL cont iLER . Version /Date 1

. USERS MANUAL Author Lb Grant

mm aes

5

ry

i | i
OBJECT DUMP J

L: 2.2.2.3 Position in Core 4

7

Las

Ls O 4
wd

fd o>
: 470 DATA a

oe,

ry

[>
. MODULE O :

rd

sae

|
-

0 8192
me

| |
LJ

+

r }

wad

Lp MODULE 1 .

)
ff 14620
us PROGRAM 4

Qo
_?

| ~

Note: It is only recommended that this program :

i is used for examining data after the _ -

= object program has been run since unless ~

module O upper boundis altered by the

| user it will overwrite part of the object 7

Lo program. >

uJ

on ° ‘eference 2.3
ROYAL AIRCRAFT ESTABLISHMENT Referenc

“Page 88
e260 CORAL COMPILER oo, :

Version/Date 16/2/76
USERS WV MANUAL .

Author ss Various

Lo

m
H

FLOATING POINT LIBRARY PROCEDURE

The floating point library procedure is the only
library procedure issued as part of the 920C CORAL
Compiling system.

Since the 920C has no floating point hardware the
object code generated from CORAL source containing
floating point operations has had to include software
floating point processing. This is effected by
using a procedure which interprets instructions as:
floating point operations when appropriate. This
floating point procedure is therefore a library
procedure and it is based on the standard 920C
floating point package, QF, with modifications to
suit the object code strategy of the Compiler.
This floating point library procedure is inaccessible
to the user since there is no mechanism for
referencing it and it would serve no purpose - the
invoking and. use of this procedure is performed

automatically and is transparent to the user. The
_procedure has a library number outside the range
of numbers available to the user.

As far as the user is concerned a knowledge of the
content and use of this package is unnecessary and
the only action required is on loading, whereby if
requested by the Loader the floating point procedure
must be loaded along with any other user library
procedures.

It must be noted that any error or warning message (4.3)

will always be output to the teletype.

The Floating Point Library Procedure, (ou 16/2/76 Version),
occupies approximately 360 program locations and 45 data
locations, on each level that uses it.

iva) | ee 2.4
(BAY 2 ROYAL AIRCRAFT ESTABLISHMENT Reference

Version /Date 4 8260 CONAL COMPILER
MANUAL | ee

USERS MANUAL | Author L Grant

J
p
o
e

—
_

—

D
e

L
e

| r
y

r
o

2.4 INTERFACE WITH THE USER

2.4.1 COMMAND LANGUAGE

Communication between the operator and a program of

the 920C CORAL Compiling System for selection of

compiling options and input/output devices is by

means of commands typed in at the teletype in

response to an invitation to type from the compiler

program.

There are two types of commands:

(1) OPTION commands.

The effect of an option command is to set up

information for use by the compiler program,

e.g. the input device. No action is taken by |

the. compiler program other than remembering

this information and replying with a further

invitation to type upon which another option

command can be typed as appropriate.

(2) ACTIVATION command.

There is only one activation command, i.e. GOd,

_whose effect is to set the compiler program

processing according to the options previously

set up or the default values if no options

have been specified. A further invitation to

type will not be given by the compiler program

until the process has been performed and

therefore, until this time, no further command

ean be issued by the user...

Option commands may be given in any order

between activation commands.

If an incorrect option command is typed it

- ean be altered by typing the correct command

(there is no means of cancelling a command, -

other than by the use of an illegal character

before }). 0

A description of command errors and the user

action required is described in 4.4.1.

Reference 2.4.2

i Sa

ea
e

rT] , uk .

| A }2 ROVAL AIRCRAFT ESTABLISHMENT “

a
Page 90 j

B20 CORAL COMPILER : -. .

: oe ‘ Ct PILE Version/Date 1
- rc 3° “eBid 4 4 . : m=

bo USERS KT NUAL Author t Grant 4

rT
wed ;

,
{

af

Us 2.4.2 COMMAND FORMAT 4

i | The invitation to type a command issued by the os

tJ compiler program is an * at the start of a new line. fi

| The format of an option command issued by the user

| |. is:
“

i (1) A three character alphanumeric group. J

(2) If an option is to be specified an =. i.

(Typing of an option command without an ~ 7

[| option .is equivalent to OPT=YES) -
|

. so :, . a

; . i

_ (3) If an option is to be specified, an option -

parameter, which will be:

L
oy

{a) A number, Or

my (b) K device specifier, of a

f (c) The words YES or NO.

- For example to specify that the output is to be .

i from the paper tape punch the option command:

ig , . .

* QUT=PTP)

1] . : oo | :
L | must be typed, and to initiate execution of the .

compiler program the activation command:

ro
:

ws

| | *
LJ Go) ;

ry must be typed.

4 -A description of all the commands and their associated -

parameters for each compiler program is provided

with the respective operating instructions in Chapter 3.

e
m

|

J
LL

i\ Fa Reference 2.5
ROYAL AIRCRAFT ESTABLISHMENT

$200 CORAL COMPILER ‘Version /Date 1
USERS, MANUAL oo: Author L Grant

|

—
d

r
e

2.5 MISCELLANEOUS NOTES

2.5.1 | COMMON CHECKING | a

The following checks are performed by the Loader
on the Common communicator and its associated

segment(s) for the units of compilation of a progran:

(1) The size of the runtime Common area is

the same for all units of compilation.

(2). A Common label is only declared once.

(3) A Common switch is only declared once.

(4) A Common procedure is only declared

once and all are declared.

. There are no other checks performed on Common

and it is the responsibility of the user to

ensure that the same Common communicator is used

with each unit of compilation of a CORAL program

and that Common procedures are not shared -between —
interrupt levels. It must be noted that the
Loader only loads one of the Common areas it encounters

=- all other Commons are’ simply checked as
described above. : ; .

, Reference 3

a ROVAL AIRCRAFY ESTABLISHMENT

: . SAP rf fg SDEG $29C CORAL COMPILER Version /Date 1

ph USERS MANUAL ' Author L Grant

| . ed
| :

i |
tJ

(| CHAPTER 3

4 OPERATING INSTRUCTIONS 7 =

Li

cy 3.1 COMPILER PROGRAMS

| |)
L
— 3.1.1 MACRO PREPROCESSOR
rm 3.1.1.1 Operating Instructions

L | 3.1.1.2 Option Commands

7 3.1.2.1 Operating Instructions

L | 3.1.2.2 Option Commands

3.1.3 PASS 1B .

| 3.1.3.1 Operating Instructions

Ld 3.1.4 PASS 2 ; .
. 3.1.4.1 Operating Instructions

| 3.1.5 LOADER a .

Li 3.1.5.1 Operating Instructions

3.1.5.2 Option Commands

| 3.1.6 OBJECT PROGRAM

. 3.2 DIAGNOSTIC PROGRAMS
io

A 3.2.1 COMPILER DATA RETENSION
: 3.2.1.1 Operating Instructions

| .3.2.1.2 Option Commands .

a 3.2.2 OBJECT DUMP

my 3.2.2.1 Operating Instructions

bf 3.2.2.2 Option Commands _

1 3.3 MISCELLANEOUS NOTES

PAPER TAPE OUTPUT SEPARATICN

COMPILER DATA SPACE OVERFLOW

COMPILER INPUT CHECKSUM CALCULATION W
W
W

®

W
o

W
W

LJ

W
N
 R

e

a

7

i} a} CAV Reference 3

‘Page 93

_ Version/Date 2

Author L Grant

ROYAL AIRCRAFT ESTABLISHMENT

S260 CORAL COMPILER -

| USERS MANUAL

i
.

i
-
-

o
y

a

a

L
e
e

OPERATING INSTRUCTIONS

All programs comprising the 920C CORAL Compiling
System are issued as paper tapes in standard 920C
absolute binary format.

A detailed knowledge of Chapter'2, which provides a
description of all constituents: of the 920C CORAL
Compiling System and the general mechanism of
interface with the user, is assumed. This chapter
simply provides basic operating instructions.

The basic operating instructions for each program
are: ;

(1) Load program using hardware initial
instructions. (Trigger to entry point
using hand-keys if using the Loader since
it is not self-triggering).

(2) Input option commands.

(3) Type GOp -

An expansion of this for each program is given below.

The option commands should have the following
format: oS

"COMMAND" = "PARAMETER",

Ufi\ Fa ; Reference . 3.1
: ROYAL AIRCRAFT ESTABLISHMENT
| | ‘Page 94
= , 206 IAL COMPILE .

8206 CORAL COMPILER Version/Date 1
BAT ry USERS, MANUAL Author L Grant

r |

ad 5 ~ st 8

a 3.1 COMPILER PROGRAMS
io

- This section provides the operating instructions.
7: for compiling, loading and executing a CORAL
| program using the Compiler Programs. -

m For a description of the Compiler Programs for
i: program production, see 2. 1.

ry

‘|
us

|

|

i.
Li

my
-

a
us

a

4

(|
I

Lo

Ls

|
i

i
Lo

Reference 3.1.1
ROYAL ALNCRAFT ESTABLISHM iT

Page 995

Version /Date

Author

S20C CONAL COMPILER

USERS MANUAL

—

we
en

ed

(3.1.1.1

MACRO PREPROCESSOR

For a description of the Macro Preprocessor,
see 2.1.1.1.

Operating Instructions - a

(1) Load the Macro Preprocessor binary paper tape
_ using the hardware initial instructions.

It is self-triggering. (If you wish to
re-enter the macro-pass then trigger to 177368)

An * will be printed on the teletype as in
invitation to type.

(2) Type the option commands on the teletype
according to the requirements (3.1.1.2)

An * will be printed on the teletype as an
invitation to type following each command.

(3) Place the first source paper tape to be
processed in the paper tape reader.

(4) Type the activation command GQ)

(a) If no checksum option was specified the
source tape will be read and processed
the expanded source output.

or

(b) If the checksum option was specified the
source tape will be read and the message
"RELOAD TAPE' will be primted in which
case repeat (3) and (4) whereby the source
tape will be read, checksuwmmed and

(5)

“processed, and the expanded source output.

Repeat (3) and (4) for each seurce tape to be
processed. Each source tape must end
with ‘HALT' (1.1.1.1) unless it is the final
tape which ends with 'FINISH' and all tapes
must terminate with a halt code (1.1.1.1).
Following the vrocessing of each source tape
which terminates with 'HALT'the message 'LOAD

‘NEXT TAPE' is printed on the teletype followed
by an * as in invitation to type in order to
initiate the processing of each subsequent tape.

GA ROVAL AIRCRAFT ESTADLISHMENT
. Referenc 3.1.1.1

iz g r IMIPILE _ Page 7° i S20 CORAL COMPILER Version 1/Date

. ~ USERS MANUAL Author i Grant

rm 7 .

o MACRO PREPROCESSOR ~

3.1.1.1 (‘HALT' keywords are not transferred to the
po (Contd) expanded source). The Macro Preprocessor ™

halts following the processing of the source -
tape which terminates with ‘FINISH' since |

. at that point all processing is complete. -

t (6) For re-use of the Macro-Preprocessor goto (1).

UL

C4

|

rm

L 7

:
i

7

7 |
|
Ls

| -

o
a

id
—

GAN
~

ROVAL AIRCRAFT ESTABLISHMENT

$20C CORAL COMPILER

USERS MANUAL

3.1.1.2
‘Reference

Page 97

Version/Date 1

Author L Grant

J
—

|

|

a
n

L
e
!

I

—_

[

—

MACRO PREPROCESSOR

For a description of the options see 2.1.1.2.

3.1.1.2 Option Commands

COMMAND |PARAMETERS | DEFAULT MEANING
.

OUT Output device for expanded source:

PTP | PTP Paper tape punch)

“PTy Teletype |

NUL No source output required

ERR Output device for error messages:

PTP Paper tape punch

TTY TTY Teletype

NUL No error output required

CON Conditional compilation request:

YES Conditional compilation required

NO NO Conditional compilation not
required, .

V = YES
t

CKS Source checksum request:

YES Source checksum required

NO NO Source checksum not required

= YES

ROYAL AIRCRAFT ESTABLISHMENT
Reference 3.1.2

Page 98
20C CORAL CORIPILE , :

S206 CORAL CORIPILER Version /Date 16/2/76

USERS MANDAL | _ ~ Author. | Verious

3.1.2 PASS 1A

For a description of Pass 1A see 2.1.2.1.

(1)

(2)

(3)

(4)

(5)

3.1.2.1 Operating Instructions

Load the Pass 1A binary paper tape using. the

hardware initial instructions.

It is self-triggering. (If you wish to re-enter
Pass 1A then trigger to 177358).

An * will be printed on the teletype as an
invitation to type.

Type the option commands on the teletype
according to the requirements (3.1.2.2).

‘An * will be printed on the teletype as an

invitation to type following each command.

Place the first source paper tape to be

processed in the paper tape reader.

Type the activation command GQ) ©

(a) If no checksum option was specified the source

or (b) If the checksum option was specified the source

Répeat (3) and (4) for each source tape to be

processed. Each source tape must end with 'HALT'

unless it is the final tape which ends with ‘FINISH*‘
and tapes must terminate with a halt-code (1.1.1.1).
Following the processing of each source tape which

terminates with 'HALT'the message ‘LOAD NEXT TAPE'
is printed on the teletype foliowed by * as an

invitation to type in order to initiate the

tape will be readand processed and the Pass 1A

intermediate code output. No intermediate

code will be output’ if it is small enough to

be contained within core for transfer to PasslB

tape will be read and. the message 'RELOAD TAPE'
will be printed in which case repeat (3) and

- (4) whereby the source tape will be read,

checksummed and processed and the Pass 1A

intermediate code output. No intermediate
code will be output if it is small enough to be

contained within core for transfer to Pass 1B.

|
 (GAP

Reference 3.1.2.1

Page 99

_ Version/Date 1

ROYAL AIRCRAFT ESTABLISHMENT

$20C CORAL CORIPILER

; : ABST a : USERS MARUAL Author 4, Grant

ae
)

_

|
i
e

o
s

__
d

L
d

(6)

processing of each subsequent tape. Pass 1A

halts following the processing of the source

-tape which terminates with 'FINISH' since at

that point all processing is complete.

Since Pass lA builds core resident compiler

tables for use by Pass 1B, Pass 1A must be

immediately followed by Pass 1B for this unit

of compilation. . : .

5
o
e

J

iia , ‘ , , “F : .) 3.1.2.2.

(5 ie ROYAL AIRCRAFT ESTADLISHMENT __ Reference
: ; : Page 100

$200 CONAL COMPILE ~
: "Issue" 3B/4

USERS MANUAL . ‘

ee Author Grant

]
a
)

1

PASS 1A

For a description of the options see 2.1.2.2.

3.1.2.2 ‘Option Commands

COMMAND | PARAMETERS | DEFAULT . _ MEANING.

OUT ; we a Output for Pass 1A intermediate

. . code: a
PTP PTP Paper tape punch

NUL No intermediate code required

ERR , - Output device for error messages:
PTP Paper tape punch ;
TTY TTY Teletype

NUL . No error output required

_ CON a , Conditionul compilation request:
YES Conditional compilation required
NO . NO Conditional compilation not

required
V = YES

CKS - de Source checksum request:
YES Source checksum required
NO NO Source checksum not required
V | = YES

LST Output device for Pass 2 object
. map:

PTP *Paper tape punch
TTY Teletype
NUL NUL No object map required

FPWR: Floating warning request from
Pass lb:

YES Floating indication required
NO NO Floating indication not required
v = YES

SSS Decimal — 14710 Stack start address
SSL number 1670 Stacx length
SSD _ ; Lo 400 Stack size difference

* Tf the object mao is requested via the paper tape vunch
Byatt Sy bate Ry york ee ft iN :
ase OR AL Le a a Yen dd

i Reference 3.1.2.2 sy
ROYAL AIRCRAFT ESTABLISHMENT , . ;

| Page 101 |

; . 92NC CONAL COMPILER Version /Date 1

‘ : oh

. USERS, MANUAL Author L Grant

{ |
”

at

7 ct 4
+ | 5

| | a

~ PASS 1A 7

Us 3.1.2.2 Note that the following are not allowed: “
(cont.) i vam

7 OUT = TTY i.e. Pass 1A intermediate code j
i cannot be output on the -

teletype .
. | 7
i or OUT = PIP i.e. Pass 1A intermediate code wi

ERR = PTP and error messages cannot .

™m be output on the same 7

fi device j

- OUT = NUL
7 oF ERR = NUL |
| ! at

ri :
Li 3

mf
=

| | !
am : “:

Pt
pee

uw .

[) =

U

L

ROYAL AINCRAFT ESTASLISHMENT Reference 3.1.3
Page 102

O700 SOBAL COMPILER a
Version/Date 16/2/76

USERS MARUAL
Author’. = Various

tu

3.1.3

3.12361

PASS 1B

For a description of Pass IB see 2.1.3.1.

Operating Instructions

N.B. If. execution of Pass 1B does not immediately
follow execution of Pass 1A for the current unit of
compilation, and therefore the Pass 1A intermediate
code does not. correspond with the core resident
compiler tables, execution of 1B will be undefined.

(1) Load the Pass 1B binary paper tape using the
hardware initial instructions.

It is self-triggering. (If you wish to re-enter
Pass 1B then trigger to 17735 8).
An * will be printed on the toretype as an
invitation

(2) peace the Pass 1A intermediate code paper
to be processed in the paper tape reader

‘ess the information has been passed in core
G. 1.2.1(5)).

' (3) Type the activation command God . {There are

no option commands for Pass 1B - those
applicable from Pass 1A are used).

'The Pass 1A intermediate code tape will be read

and processed and the Pass 1B intermediate
code will be output.

4
d
 CAR Reference 3.1.4

Page 103

Version/Date 2

ROVAL AIACRAFT ESTABLISHMENT

ASB Pam ar mrmas $265 CORAL COMPILER

i. USERS MANUAL Author L.Grant

m7 a

| |
i

: 3.1.4 PASS 2

Ly For a description of Pass 2 see 2.1.4.1.

m 3.1.4.1 Operating Instructions

7 N.B. If execution of Pass 2 does not immediately
a follow execution of Pass 1B for the current unit of

compilation, and therefore the Pass 1B intermediate
. code does not correspond with the core resident
im compiler tables, execution of Pass 2 will be
| undefined.
to} . .

; (1) Load the Pass 2 binary paper tape using the
i. hardware initial instructions.
i . .

It is self-triggering. (Tf yen wish to re-enter
[7 Pass 2 then trigger to 17735

if An * will be printed on the Beletype as an
invitation to type.

. (2) Place the Pass 1B intermediate code paper tape
to to be processed in the paper tape reader.

[| -(3) Type the activation command GO... (There
= ' are no option commands for Pass 2 ~ those

applicable from Pass 1A are used).
c) a
L | The: intermediate code tape will be read and

processed and the relocatable binary tape for
[| the unit of compilation output.

Ls
Note: Wind the output tape up BACKWARDS in {|

preparation for input to the Loader. |

o
n

ne —
_
 ANE Reference 3.1.5:

ROYAL AIRCRAFT ESTABLISHMENT
Page 104

$20C CORAL COMPILER
as

USERS MANUAL Author

Version/Date 16/2/ 16

Various

o
o

a
a
a
 J

a
l

o
o

3.1.5

3.1.5.1

3.1.5.1.1

LOADER

For a description of the Loader see 2.1.5.1.

Operating Instructions

Normal Loading

Normal Loading is the loading of a single level.

(level 1) program consisting of one or more units

compilation using the non-reduced Loader.

(1) Load the Loader binary paper tape using the

hardware initial instructions.

(2) Trigger to 4096 using the hand-keys. (It
is not self-triggering). .

(3) Type the option commands on the teletype

according to the requirements (3.1.5.2).

An.* will be printed on the teletype as. an.

invitation to type (if the reduced loader

option is specified see 3.1.5.1.2).

(4). Place the first relocatable binary paper

tape of the program in the paper tape

reader, (Relocatable binary tapes

for the units of compilation of a program

may be loaded in any order excluding the |

library tape(s) which must be loaded last.

The entry point of the program is assumed

to be the first statement of the first

segment loaded).

(5) Type the activation command Go).

The relocatable binary tape will be read.

A number of core utilisation messages will

of

be printed as the tape is processed (4.1.5.2)

followed by an * as an invitation to type.

-(I£ the tape was not placed in the reader

backwards the message ‘INVALID TAPE! is printed
on the teletype and (4) and (5) must be

repeated).

(6) Repeat (4) and (5) for each relocatable binary
tape of the program to be loaded and again

for each relevant library tape until all

library procedure calls are satisfied.

(7): Type the option command END }.

An * will be printed on the teletype as an

invitation to type.

o od
c erence. . (GA ROYAL AIRCHAFET ESTABLISHMENT Refere 3.1.5.1. \ . _ Page & 106 4 | §20C CORAL COMPILER . _ 105 ° Lo

Version/Date 16/2/76 « USERS MANUAL | F m7
re Author Various d

in
.

r 5
mI LOADER

f

{. ‘

. .

~
i 3.1.5.1.1 (8) Type the activation command coy ° : (Contd) =
m The processing will be terminated and the | message 'PROGRAM ENTRY entry point! will be 4 cs printed specifying the program entry point . : in the current radix. An absolute binary o| paper tape will then be output on the punch a i if the option was specified in (3). In ; either case the object program will be ~ - resident in core awaiting execution. |
i N.B. The Loader cannot be rerun without reloading it. 7 ;

,) eo 3

i
ail id

, , ; ~ ro 3.1.5.1.2 Normal Loading by the Reduced Loader: |
Us :

| this mode of operation is now obsolete, J

i J LI

7 | ||
-d (3

]

La
-

. 7 7
4

Low

Ls
.

‘} |
4] Loi

. 4

|
| bo

}
on

a

|

te
ns

nn
 o

t
w
e
e
t

Reference 3.1.5.1.3.
ROYAL ALACRAFT ESTABLISHMENT

“Page 107
$2GC CORAL COMPILER Version /Date 16/2/76

USERS RAMU AL Author farious

a
a
y

he

3.1.5.1.3

LOADER

Multi-level Loading

Multi-level Loading is the loading of a multi-level
program consisting of four or more units of
compilation using the non-reduced loader.

(1)

(2)

(3)

(4)

(5)

(6)

Load the Loader binary paper tape using the
-hardware initial instructions.

Trigger to 403645 _using the hand- “keys. (It

is not self-triggering).

Type the option commands on the teletype
according to the requirements (3.1.5.2).

An * will be printed on the teletype as an
invitation to type (if the reduced Loader
option is specified see 3.1.5.1.4).

; ,

Type the option command LEV=Level no,
specifying the level upon which the
following segments are to be loaded.

An * will be output on the teletype as an
invitation to type.

' Place the first relocatable binary paper
tape for that level: of the program in the
paper tape reader, . -©° ».. (Relocatable
binary tapes for the units of compilation
of the program must be loaded together for
each level but may be in any order within
the level followed by the library tape(s) for
that level. The entry point of a level is
assumed to be the first statement of the

first segment loaded on that level; the entry
point of the program is assumed to be the
entry point of level 1).

Type the activation command GO) .

The relocatable binary tape will be read,a
number of core utilisation messages will be

_ printed as the tape is processed (4.1.5.2)
‘followed by an * as an invitation to type.

GA ROYAL AIRCRAFT ESTAGLISHMENT
[| |
i ! Pace 168 & 109

: $260 CORAL COMPILER oe “yes ce
Version/Date. 16/2/76

ra USERS MANUAL . .

| | Oe, Author Various

L i
.

~ 35
mm

eof

(7)

(8)

(10)

(9)

Repeat (5) and (6) for each relocatable
“binary tape of the current program level

to be loaded and again for each relevant

library tape until all library procedure

calls are satisfied. ;

Repeat (4) - (7) for each level. (The same

library tape(s) may be read for each level

and the Loader will automatically create a

copy of each relevant procedure per level

upon which it is used).

Type the option command END) .

-An * will be output on the teletype as an

invitation to type.

Type the activation command GQ) .

The processing will be terminated and the

message 'PROGRAM ENTRY entry point’ will

be printed specifying the program entry

point in the current radix. An absolute

binary paper tape will then be output on

“the punch if the option was specified in

(3). In either case the object program will

be resident in core awaiting execution.

N.B. The Loader cannot be run without reloading it.

3.1.5.1.4 Multi-Level Loading by the Reduced Loader

- This mode of operation is now obsolete.

Reference. 3.1.5.1.3

J

o
d

3.1.5.2
i

_
e
i

(-
o
o

ay yo ; Reference
i ROVAL ALACRAFT ESTASLISHMENT
- Page 110

CORA SAPILES . ic 9206 CORAL CGRPILER | Version /Date 46/2/76

USERS. MANUAL Author Various

LOADER

For a description of the options see 2.1.5.2.

3.1.5.2 ‘Option Commands

COMMAND PARAMETERS DEFAULT MEANING

RAD User interface Input/Output
number radix

B16 B46 Octal

12, (=10,)) Decimal

MOL O-17777 1054 Module @ lower bound
MZU O-17777 17745 }Module % upper bound

MLL 20000-37777 20000 Module 1 lower bound

M1U 20000-37777 34563 Module 1 upper bound

DMP Absolute binary dump
required?

YES Yes
NO NO No
Vv = YES

LEV 1-4 Loading level specification
G D 1 level program (all

. segments on level 1)

END Last tape. loaded?
YES NO Yes.
NO NO No
Vv = YES

AUT Self-triggering on loading?
YES Yes oo,
NO NO No
v = YES

All unsubscripted figures are in octal,

The Autestert facility is provided sutomstieslli:, in -

Rulti-level progrems only. Single-level programs needing

it should be loaded using I1EV=1 rather than LEV=0.

For it to function correctly AUP=YES must also be selected:

if Self.Urie-srine is NOT ectusllv renuired see 1.7.3.4.

noo Reference 3.1.6
ml o\ ROVAL AIRCRAFT ESTABLISHMENT _ | . , Page 111 ;
ti oo yore APELEE , . . S20C CORAL COMPILER Version /Date 16/2/76

Po USERS MANUAL Author Various

L

7 3.1.6 OBJECT PROGRAM

_ After loading using the 920C CORAL Loader, the
- object program is resident in core awaiting
t execution.

m To execute the object program in core:

(1) Trigger to the entry point using the
my hand-keys.

- To execute the absolute binary object program:

i! (1) Load the object code absolute binary
st paper tape using the hardware initial
ey instructions.

| : : 1 ,
- (2) If the AUT option was specified, i.e.

| §elf-triggering , execution of the object
[) program occurs following (1), otherwise
Ls trigger to the entry point provided

using the hand-keys.

ne

is 1

L

4

Li.

=

Reference 3.2

Page 112

“Version /Date 1

Author L Grant

ROYAL AIRCRAFT ESTABLISHMENT

9200 CONAL COMPILER

USERS MANUAL

J
J]
.

__
_t

|

C

e
e

| n
e

a
e

t

DIAGNOSTIC PROGRAMS

This section provides the operating instructions
for the use of the Diagnostic Programs. supplied
with the 920C CORAL Compiling System.

For a description of the Diagnostic Programs
see 2.2, ,

[-

i
)

GAP . Reference 3.2.1

Page 113

Version/Date 1

Author ~L Grant

ROYAL AIRCRAFT ESTAGL iSMMENT

920C CONAL COMPILER

USERS ‘MANUAL

a

ee

_
=

ra |

a

—
—
—

4
L
e

[

3.2.1 COMPILER. DATA RETENSTION

For a description of the Compiler Data Retension.
program see 2.2.1.1.

Operating Instructions

(1) Load the Compiler Data Retension Program
binary paper tape using the hardware
initial instructions.

It is self-triggering.

An * will be output on the teletype as
an invitation to type.

(2) Type the option command on the teletype
according to the requirements (3.2.1.2).

An * will be printed on the teletype as
an invitation to type.

(3) If. the option was RST place the paper tape
- containing the dumped compiler tables in

the paper tape reader.

(4) Type the activation command GO).

(a) If the DMP option was specified
a paper tape containing the dumped
compiler tables will he output on
the punch.

or (b) If the RST option was specified
the paper tape containing the
dumped compiler tables will be
read and reset in their original

. positions in the 920C core,

ba
nd

a
i
n

1
)

GIP ROYAL AIRCRAFT ESTABLISHMENT

USERS MANUAL

Reference 3.2.1.2

Page 114
Version/Date 1

Author L-Grant

|

C
d

—

|

a
d

s
e

4
.

C
o

[

wd

COMPILER DATA RETENSION

For a description of the options see 2.2.1.2.

3.2.1.2 Option Commands

COMMAND | PARAMETERS | DEFAULT. MEANING

DMP Compiler Table Dump required:

YES Yes a

NO NO No

v = YES

RST Compiler Table Restore required:

) YES Yes .

NO NO No

v = YES

Obviously DMP and RST cannot be specified together.

a Reference 3-2.2
ROYAL AIRCRAFT ESTABLISHMENT ;

For a description of the format of the
output see 4.2.2,

(4) For re-use of the Object Dump Program go to

(2).

[Page 115 |
5 20€ CORAL COMPILER } . S20 CORAL COMPILER “Version/Date 1 .

- USERS MANUAL Author L.Grant i
| . , . 3

. ~t oy

| |
i ;

3.2.2 OBJECT DUMP a
mf

: i ~ }
i | For a description of the Object Dump Program 4

see 2.2.2.1. -

o ;
i 3.2.2.1 Operating Instructions _d

— (1) Load the Object Dump Program binary paper tape ’
| - using the hardware initial instructions. |
L . . wank

It is sei f-triggering.
ry

i 1

L. An * will be output on the teletype as an vad
invitation to type.

i. . . ian

io (2) Type the option commands on the teletype 3
according to the requirements (3.2.2.2).

ms
| An * will be output on the teletype as an

ss invitation to type following each command.

[| (3) Type the activation command Go). 4

The contents of the specified area of core
f will be output. 4

a
n
e
s

_

Od
p
e
e

ROVAL AIRCRAFT ESTABLISHMENT

S20C CORAL COMPILER

USERS MIANUAL

Reference 3.2.2.2

Page 116

Version /Date 1

Author L Grant

e
d

p
e

OBJECT DUMP

For a description of the options see 2.2.2.2.

3.2.2.2 Option Commands

COMMAND PARAMETERS DEFAULT MEANING

OUT Output device for dump

_PTP Paper tape Reader

TTY TTY Teletype

RAD User Interface Input
number radix

Bio Octal

129 (=10) 9) 1016 Decimal

MOD O- 5 fe) Core Module No.

STA O-8191)5 O Module relative start
address of core to be
dumped

FNA O-8191,, O Module relative finish
address of core to be
dumped

J

o
o

Vi
e

a
n

(GAP Reference 3.3

Page 117

Version /Date 1

Author L Grant

HOVAL AIRCRAFT ESTASLISHMENT

G20C CGRAL CGAIPILER

USERS MANUAL

3.3 MISCELLANEOUS NOTES

The following is a collection of useful information
which does not logically fit in any of the above
sections. | ;

GAP Reference 3.3.1.
2 AIRCRAFT ESTABLISHMENT - ROYAL cR SHMENT Page 118 4

; $20C CORAL COMPILER Version /Date 1

USERS MANUAL - Author L Grant /

>i ee

3.3.1 PAPER TAPE OUTPUT SEPARATION

If the paper tape punch runs out during the output
from the programs of the 920C CORAL Compiling
System it is normally acceptable, although perhaps
undesirable, to stop the program,runout some >
blanks, reload the punch, and continue thus
separating the output onto two paper tapes. The
following list describes where it is acceptable
to split tapes:

(1)

(2)

me)
(4)

(5)

(6)

(7)

Output:

Macro Pass ~

Pass 1A [=

Pass 1B, .

Pass 2 | =

Loader. -

- Compiler Data-
Retension
Object Dump -

source

' intermediate
code
intermediate

' code
relocatabie
binary .
absolute
binary
compiler
tables
core dump

are significant

Yes

Tape can be split:

Yes, i.e. blanks
are not significant
Yes

Yes

Yes

No, i.e. blanks

Yes

a

.
!

2 cp
aa

io
am

ee
sa

dl

ray

a
)

a
p
e
e
p

l
h
,

Reference - 3.3.2
ROYAL AIRCRAFT ESTABLISHMENT — :

Page 119
@20C CONAL CORPILER a .
° ; Version/Date 1

USERS MANUAL . _ Author L Grant

S
p

e
y

i

COMPILER DATA SPACE OVERFLOW

If compilation halts with errors 20 or 100, the
920C core store has become full on compilation
due to the unit of compilation being too large
or too complicated. The following suggestions
may help to overcome the problem:

(1) Split the unit of compilation into several
segments and compile them individually or
if it is a Library unit split the procedures
into several units.

(2) Reduce identifiers to between 1 to 3
characters, particularly procedure names
if the error occurred in Pass 2. (This
may easily be effected by redefining the
names with macro definitions).

(3) Split any declaration which has a large
_preset list into several declarations
thereby reducing the number of presets
per declaration. (The split declarations
may be overlaid with the original declaration
.for access).)

(4) Remove presets altogether and initialise
at runtime.

NOTE: If the store space is exhausted during
execution of the Macro Pass the source
probably contains a recursive macro call.

Reference 3.3 3

Page 120
8200 RAL COMPILER : * CORA Version /Date.1

L Grant USERS MANUAL ' Author

3.3.3 COMPILER INPUT CHECKSUM CALCULATION |

Although the input to each compiler program is
‘line buffered the checksum accompanying the
input is not and it exists as the checksum of
the whole tape. Warning 2 is produced if on
reading the tape the calculated checksum
disagrees with the value on the tape. However,
since this check is not performed until
the whole tape is read a mispunch may cause
the compiler program to fail in an undefined
way.

b
d

f.
A

e
e

|

’\ yo ' . Reference
i LF ROYAL AIRCRAFT ESTABLISHMENT
4 —_ Page 121

oH Z 8 EN J heee £8 . .

S20C CORAL COMPILER Version /Date l

i USERS. MANUAL Author L Grant
Lod : .

-
CHAPTER 4

m DIAGNOSTIC OUTPUT

m 4.1 COMPILER PROGRAMS
1 |

4.1.1 MACRO PREPROCESSOR

[| 4.1.1.1 Error Messages

4.1.1.2 Warning Messages
- 4.1.2 PASS 1A
ry 4.1.2.1 Error Messages
= 4.1.2.2 Warning Messages

- 4.1.3 PASS 1B
i | 4.1.3.1 Error Messages

we 4.1.3.2 Warning Messages
O 4.1.4 PASS 2
i 4,1.4.1 Error Messages / g
se 4.1.4.2 Object Map
Oy 4.1.5 LOADER -
| 4.1.5.1 Error and Warning Messages

~ 4.1.5.2 Core Utilisation Information

7 4.2 DIAGNOSTIC PROGRAMS

; 4.2.1 COMPILER DATA RETENSION
7 4.2.2 OBJECT DUMP

i 4.3 FLOATING POINT LIBRARY PROCEDURE
i: ,

4.4 MISCELLANCOUS NOTES

LL 4.4.1 COMMAND ERRORS

in

J
 Reference 4

Lo

AVE : L ae E LISHMENT UI GA | ROVAL AIRCRAFT ESTABLIS | Page 122

Ca — & Ae SE : $200 CORAL COMPILER Version /Date 1

i. USERS MANUAL Author L Grant
(: ‘

. ,

ri 4 DIAGNOSTIC QUTPUT

. This chapter describes all the diagnostic output produced

- by the programs of the 920C CORAL Compiling System, €.g.

i error messages, core maps, etc. An explanation of the

method of production and use of the information from each

m4 program is described by the equivalent sections of

7 Chapter 2.

:
'
i

|
Ld

|

us

r)
i
Ls

ry

i }

lL)

Ws

toy

Ls

cy

=

GAP - 7 Reference ALL
ROYAL ALRCRAFT ESTAGLIGHMENT

qt Page 123
= S200 CORAL CON : 200 CORAL CGRIPILER Version/Date 1
= USERS, MARUAL Author L Grant

a . >

i 4.1 COMPILER PROGRAMS

Us The format of an error/warning message from the Macro
— Pass, Pass 1A and Pass 1B is:

E/W na AT (nb : nc) (nd : ne)

where
na Error/warning number
nb Number of line in which error starts
ne Number of character within line na where

error starts
nd Number of line in which error finishes - Not present
ne Number of character within line nd where if a

character

error.
error finishes

It must be noted that the line numbers produced by the
Macro Pass refer to the original source and those
produced by Pass 1A and Pass 1B refer to the expanded
source from the Macro Pass. It is assumed that there are
offline facilities for listing these files.

The format of an error message from Pass 2 is simply:

Ena

The format of any other messages are described in the
relevant sections below.

i
oe Reference 4.1, ~ on GAR ROVAL AIRCRAFT ESTABLISHMENT 1.1 a _ iit} : Page 124 4

Sy . Fey ae at ; 7321 IDS . ee . ‘ : OC CORAL CONAPILE .
2 VAAL © LER _Version/Date 1 .

| USERS MANUAL Author L Grant }

zi m
.
. $
mo 4.1.1 MACRO PREPROCESSOR |

7 4.1.1.1 Error Messages

m } Ld 2

NUMBER MEANING RESULT

- |
i 1 Parity error on input Character ignored. 4

Processing continues.
mM

. “=”
L | 4 Invalid keyword Character ignored j
Ce until next symbol. “
4 Processing continues. Y

lL 5 No (in 'LITERAL' : " j
7 No) in 'LITERAL' "

[8 No (in 'OCTAL! " \
- 9 String too long, i.e. 7
a >630 characters " \

L 10 Invalid use of + " S

4 ll Invalid character after ;
1 : in string "

12 Invalid number following *
6 'X' non-printing .
Lt character in string, i.e }
- not between O and 127. " ;

(13 -No ! after non-printing
character in string " |

14 No) in 'OCTAL' " -
(| a i | 15 Invalid character after.
Lo ! in literal " wd
(3 16 No ! after non-printing
Z character in literal "

20 - 920C core store full on |Compilation halts 7
(| : compilation - unit of (See 3.3.2) .
Li . compilation too large 7

21 A macro call with an The macro is not :
. incorrect number of expanded & the next \
- parameters, i.e. it symbol that is :

does not correspond analysed & output is ,
i to the definition the first symbol
J following the next }

semi-colon j

’ Reference , 4.1.1.1 —
| (HA ROVAL AIRCRAFT ESTASLISHMENT TO
: ; Page 125
t j 2 CONRAIL MPILE . $20C CORAL COMPILER Version /Date 1

Q . USERS. MANUAL Author L Grant.

m "

— 4.1.1.1.
Co (cont.)
i : ; :

. NUMBER MEANING RESULT

.

L 22 'DEFINE' or 'DELETE' is | No action is taken a
not followed by an no further output is

ia identifier produced until the
| next semi-colon has

. been read

‘| 23 Two identical formal The definition is not!
Ls parameters in the accepted and no output

same macro is produced until the
- definition next semi-colon has
| been read

an 24 A macro definition or This has no effect on
pe deletion is not . the operation of the
.! followed by a semi- directive but no
m4 colon ~ analysis is performed
' & no output produced
i until the next semi-

colon symbol has been
[| read

wu 25 Request to delete a No action is taken.
- non-existent macro, or Processing continues.

a macro that cannot be :
i Geleted because it is

either an active macro
i | or the name of a formal
it parameter of an active

macro. . ,

z 26 Error in the format of | The macro is not
on ; an actual macro expanded & no output

parameter or analysis occurs
i. until the next semi-~
a colon is read.

. 27 Error in the syntax The definition is not
of a macro definition, accepted & processing

u either the parameter is not resumed until
list is wrong or the the next semi-colon
macro body is not has been read.
present,

28. | Attempt to define a The definition is not
1

wd
Macro with the same
name as an active macro
‘or a formal parameter
of an active macro

accepted & processing
is not resumed until
the next semi-colon

has been read.

Reference 4.1.1.1

f
r
a
t

ry GAR ROYAL AIRCRAFT ESTABLISHMENT “
= , Page 126. 3

| S206 CORAL COMPILER Version/Date 1 ,
: USERS ‘MANUAL Author Lb Grant :

| }

m1 4.1.1.1 4
[| (cont.) ;
an NUMBER MEANING RESULT om

7 }
100 A compiler data area is |Compilation halts

— full ~ unit of (See 3.3.2) an
[| compilation is too }
oS large or too complex -

2500 Compiler consistency Compilation halts 4
Lo error. 3

(
L i

aad

r io

LI |

:) LI

J

[|. *
a |

C5
*

| 4

J
Poo

I | . Z :
]

LU |

f
LU

| .
a

LU }
~ {

ad

|

a \
j

: . - Reference 4.1.1.2 GAB ROYAL AIRCRAFT ESTABLISHMENT
bof 2 om ¢ SB iB R ; 4 | . S20C CORAL COMPILER Version /Date L

1

MACRO PREPROCESSOR
ry

do. 4.1.1.2 Warning Messages

i : - a
i. - | NUMBER MEANING me . RESULT

Z - . 1 Illegal CORAL character |Character ignored, Lj '{|processing continues.

| *2 Checksum failure on Processing continues
L | input (if option

specified)

de 3 Input buffer full, Processing continues.
i.e. more than 120 (A character may be

3 Characters on a line lost).

|
LJ

bo - * Output of warning 2 is often caused by the output
of other error or warning messages even if there

‘| is no checksum failure.

|
oar

rs
-

|
|

-

ROYAL AIRCRAFT ESTABLISHMENT .
Reference 4.1.2

i Page 128
s20C CORAL COMPILER . S206 CONMAL COMPILER Version /Date 1

rm ce BA AALS 7 3
|| USERS: MANUAL Author L Grant)

n 7 4

on PASS 1A |
i : 3

4.1.2.1 Error Messages

mn 1
- NUMBER MEANING RESULT

1 Parity error on input Character ignored. rm)
{Processing continues.

, ;)
4 Invalid keyword Characters ignored “|

5 No (in 'LITERAL'

No) in ‘LITERAL!
No (in 'OCTAL'

9 String too long,
i.e, >630 characters

10 Invalid use of +

11 Invalid character
after ! in string

12 Invalid number
following 'X' non-
printing character in
string, i.e. not
between O and 127

character in string

14 No) in 'OCTAL!

15 Invalid character after

! in literal

’ 16 No ! after non-printing
character in literal

20 920C core store full on
compilation
(compilation halts

|because unit of
compilation is too
large)

13 No ! after non-printing

until the next
terminator which is
usually the next semi-
colon. Processing

continues.

Compilation halts.

(See. 3.3.2)

Me
so

,
N
e

a
‘

h
e
e
y

R
y
m
a
n

ba
ne

cn
t

wd

N
d

Lo
w

ROYAL AIRCRAFT ESTABLISHMENT

$20C CONAL COMPILER

USERS MANUAL

Reference 4.1.2.1.

Page 129

Version/Date 1

Author iL Grant

L
d

S
y

NUMBER MEANING — RESULT

21

22

23

24

25

26

27

28

29

30

32

'FIXED' not. followed

by (

Specification of
total bits not an
integer

Specification of
total bits not
followed by a comma

Specification of
fraction bits not a
Signed integer

‘FIXED! specification
not concluded by).

Exponent not a signed
integer

'BYTE' not followed
by 'ARRAY'

'CODE' not followed
by 'BEGIN'

'BITS' not followed

by [

Field width
specification in
operation not an
integer

'BITS'

Field width

specification in ‘BITS!
operation not followed
by a comma

Bit position
specification not an
integer

Characters ignored
until the next |
terminatcr which is
usually the next semi-
colon. Processing
continues. -

1

#t

"

7
GAP ROYAL AIRCRAFT ESTA SLISHMENT

2
 200 CORAL COMPILER

USERS MANUAL

Reference 4.1.2.1

Page 130 |

Version /Date 1

Author L Grant

S
e

e
d

R
a
n
m
a

J

H
o
y

a

|
C
e
e

v
d

1
i

"]
a

el

4.1.2.1
(cont.)

.NUMBER MEANING RESULT ©

33

34

35

36

37

“38

39

40

41

42

"BITS' specification
not terminated by]j

Invalid symbol,
commonly an error
in a number format

Integer too large
i.e. <-131071,,

>t1310715,

> 777777

(See 1.1.3.3)

Total bits in 'FIXED!
specification greater
than 18, or in 'BITS'
or ‘UNSIGNED!

specification greater
than 17.

Fractional bits in
'FIXED'specification
outside range +1023

Real number too large
to hold in two-word
floating format

Invalid CORAL structure

| Variable not followed
by assignment symbol
where expected

"PROCEDURE' not followed

by an identifier

‘GOTO! not followed by
an identifier

Characters ignored
until the next
terminator which is
usually the next semi-|
colon. Processing
continues.

“ft

Ca
ce
re
s

net

Ne
on

at
al

”
t

‘ te
e
e
e
t

S
e
o

K
e
e

an
a

,
'

r
a
m
e
n

e
e
l

Ree
 a

eg
ge
e”

e
e
)

‘e
nt
re
e

[
r
a
e

:
a
l
!

7
D
p

»

A _ Reference 4.1.2.1
(5 2 , ROYAL AIRCRAFT ESTABLIGHMENT

, | Page 131

o
d

p
o

tr

T
e

re
m

S20C CORAL COMPILER Version/Date 1

‘USERS MANUAL "Author L Grant

4.1.2.1
(cont.) ;

NUMBER MEANING RESULT

43 Switch or array has too |Characters ignored
many subscripts until the next

terminator which is
usually the next semi-
colon. Processing
continues.

44 Condition not "
followed by “THEN

45 ‘OVERLAY' not "
followed by an
identifier |

46 Right hand bracket of of
one-dimensional array

element missing in
overlay declaration

47 Base of overlay has "
more than one subscript
or overlay declaraction
does not contain 'WITH'

48 'SWITCH' not followed
by an identifier

49 'SWITCH' ID not "
followed by an : -
assignment symbol ©

50 'TABLE' not followed | "
by an identifier

51 ‘TABLE' ID not ; i

followed by [

52 Error in table size "
specification

53 Table size " °
. specification not.

concluded by]

54 Table declaration not.

followed by [

55 Exror in preset constant "

list

I
]

d
d

i | _ : Reference 4.1.2.1
Jo ROYAL AIRCRAFT ESTASLISHMENT 132

J
.

—
—
y

a

w
e
e
d

—

p
o

a

-
. Page 3

$200 CORAL CGMPILER Version /Date 1 -

USERS MANUAL Author L Grant j

sot “y

J
4.1.2.1 ;
(cont.) vy

NUMBER MEANING — RESULT A

. ~
56 Identifier list not Characters ignored ;

present in ~ Vuntil the next
declaration terminator which is

usually the next semi-
colon. Processing
continues.

57 Integer expected and "
not found

58 Subscripts not : "

terminated by]

59 Procedure actual "
parameters not
separated by commas,
orno closing bracket
on procedure call or ©
declaration

60 {Assignment symbol not "
present in 'FOR'
statement

61 ‘po' not present in ee
'FOR' statement

62 'UNTIL' not present "
/ fin 'FOR' statement ~

63 Conditional expression - "
‘|}does not contain 'THEN'

in correct position

64 No 'ELSE' in conditional om
expression

65 Array declaration with "
incorrect bounds ,
specification

66 Unmatched parentheses in "
- expression

67 Incorrect structure . . "
following 'LOCATION'

a
d

cc
ana

l
ta

na

I

>
Be

si
e

Yam
enn

al
bo
ne
d

ae
d

te
sa
ne
nd

N
e
a
t

e
d

e
a
t
e
n

S
Le
an
er

_]

J

GaP ROVAL AIRCRAFT ESTABLISHMENT

920C CONAL COMPILER

USERS MANUAL

Reference 4.1.2.1

Page 133

‘Version/Date 1

Author. L Grant »

(cont.)
4.1.2.1

NUMBER MEANING RESULT

68

69

70

71

72

73

74

75

76.

78

| Typed expression not
enclosed in

brackets

Invalid primary

Open square bracket
missing in anonymous
reference, or invalid
structure to word
reference

J missing in anonymous
reference

Illegal syntax in code
statement

Number type

specification in
procedure parameter
specification neither
followed by 'ARRAY' or
‘PROCEDURE' nor preceded
by 'VALUE' or 'LOCATION'!

Error in specification
of procedure parameter

Error in table field
specification

Total bits not specified
in table field
specification

Table preset list not
terminated by]

Too many arguments to
operator. Most

operators have a general
limit of 31. arguments

Characters ignored
until the next
terminator which is

usually the next semi-
colon. Processin
continues. :

#3

i\ Fa , . Reference 4.1.2.1
= ROVAL AINCRAFY ESTABLISHMENT > . .

[| Page 134
$206 CONAL COMPILER ; |

ae ° ° COE Version/Date 1

Py USERS, MARUAL Author L Grant

i

rs -

|
_ 4.1.2.1
rs
i (cont.)

- NUMBER MEANING RESULT

i. |
L | 79 Illegal bit position Characters ignored

in table element or until the next
m7 ‘BITS' operator terminator which is

ti usually the next semi-
-colon. Processin

an continues. :

us 80 Compilation unit name "
a not present

I
La 81 'COMMON' ID not "

followed by (
cy

L | 82 'CORAL’? not found at "
start of program

fr]
in 83 Source tape not ; "
~ terminated by 'FINISH’'

oy).
l 84 Unrecognised syntax "
As structure to program

element

[|
is 85 Common list not 7H

terminated by semi-
fo colon

iJ |
86 Un-named segment within "

- compilation unit
[| .

87 Segment is not a block "

' 88 ‘OVERLAY! ID 'WITH' not "
Mo followed by declarations

i. 89 Invalid table field "
= description

°90 |Incorrect termination "
i to table field

a 91 Unrecognised construction "
7 in library

4 specifications

92 Unrecognised construction "
in declarations

Reference
(Ge We ROYAL AINCRAFT ESTABLISHMENT 4.1.2.1,

= t ; Page 135..

je! 28C CORAL COMPILER ; .
* ° s aria Version/Date 2

_ USERS MANUAL Author L Grant
|

} 4.1.2.1
mo (cont.)

Li NUMBER MEANING RESULT

. 93 | Semi-colon missing Characters ignored
: before procedure until the next ,
- body, or procedure terminator which is

body statement usually the next semi-
missing : colon. Processing

continues.
o-

Z 94 Attempt to preset "
table

- specification

» 95 |ZIllegal separator "
P between CORAL
[| structures
|

- 96 On compilation of a "
ry single segment source, .
a) the two occurrences of

the segment name are
9 | @ifferent

La :
. 97 Code statement used "
a outside code block
|
~ 98 Invalid CORAL uM
: compilation unit

= ‘100 A Compiler data area Compilation halts

is full - unit.of (See 3.3.2)
compilation is too

is large or too complex

eo 152 Library procedure Characters ignored

7 |number cannot be 1 until the next
Ww terminator which is

usually the next semi-

I colon. Processing
us continues.

> 500 Compiler consistency Compilation halts

error

pd fi\ Fs ; a an Reference 4.1.2.2
ROYAL AIRCHAFT ESTASLISHMENT 7

aI Page 136
= esS6 CORAL COMPILER . “
S . ~ “ee Version /Date 1

ERS RIAL “4 i \ USERS MANUAL Author L Grant

m PASS 1A | }

4.1.2.2 Warning Messages .
o ;

f
NUMBER MEANING RESULT -

m7 : | 4 ‘ 1 Illegal CORAL character | Character ignored.
a in source , Processing continues 4

i. *2 Checksum failure on Processing continucs 3
input (If option _

| specified)
Li val

3 Input buffer full, i.e Processing continues.
~ more than 120 _ (A character may be :
1 | characters on a line lost). al

m on

Lo}

| * Warning 2 is often caused by the output of other -
= error or warning messages even if there is no

. checksum failure.

(7 .
ba

f) .
a a

‘|

=

=

ia

|

4.1.3 i\ Fo a . Reference = Ie _ ROYAL AIRCRAFT ESTABLISHMENT
ri 7 oe Page 137
y B90f CORAL CreaDpiiER : 4 . Si GUAAL COMPILER Version /Date L

mn USERS MANUAL Author L Grant
to

* . :

1

i. 4.1.3 PASS 1B

| 4.1.3.1 Error Messages

iz

NUMBER MEANING RESULT
cy

oS 1 Parity error in input Character ignored.
m Processing continues.

) 20 920C core store full Compilation halts.
a on compilation - unit (See 3.3.2).
| of compilation is too
wd large

) 85 Common list not Characters ignored
i) terminated by semi- until the next

colon terminator which is
my usually the next semi-
| colon. Processing

: continues.
mr)
[| 86 |Un-named segment "
a within compilation

unit
i ;
i 87 |Segment is not a "

block

a 88 'OVERLAY' ID 'WITH! "
not followed by

C3 declarations :

89 Invalid table field "
, description
7
-! 30 Incorrect termination "

. to table field.

= 91 Unrecognised "
construction in library

io specifications

~ 92 Unrecognised "
; construction in
| declarations

LH

T
D

J

twice at the same block

level . ;

BR Reference 4.1.3.1 *
i (G5 t 12 ROYAL AIRCRAFT ESTABLISHMENT - a

oo Page 138 a
QP CLES HI Presngrss = . $20C CORAL COMPILER Version /Date 1 .

) USERS. MANUAL Author L Grant

Pa “3

4.1.3.1 °
(cont.) -

| NUMBER MEANING RESULT roe

93 Semi-colon missing ‘|Characters ignored
before procedure body, until the next ~
or procedure body terminator which is
statement missing usually the next semi- °

: colon. Processin un
continues. _

94 {Attempt to preset "
a table ~
specification .

95 Illegal separator "
between program
elements

96 On compilation of a " ~
single segment source, ne
the two occurances of
the segment name are
different

97 Code statement used "
outside code block

98 Invalid compilation "
unit. The source is not
recognised as a CORAL
compilation unit

100 A Compiler data area is: |Compilation halts
full - unit of (See 3.3.2) °
compilation is too
large or too complex

102 Label declared twice Characters ignored
at same block level until next

terminator which is
usually the next semi-
colon. Processing
continues.

103° Identifier used as no
both label and variable
within the same block

104 Variable declared "

T
r

a

(At ROVAL AIRCRAFT ESTABLISHMENT

S200 CORAL COMPILER

USERS. MANUAL

Reference 4.1.3.1

Page 139

Version/Date 1

Author L Grant.

—

p
o
e

h
e
e

'
to

4.1.3.1
(cont.)

NUMBER MEANING RESULT

105

106

107

108

109

110

lili

112

113

114

‘than 62 levels within

Variable used prior to
its declaration at

the same block level

Undeclared variable

has same name as a
label used or
declared in an outer
block

The block nesting has
been carried to more

than 63 levels, or more

a procedure

A declaration of a
prespecified entity
does not agree with the
specification

An answer is not given
in a procedure that
requires one

Nesting of procedures
has been carried to more.
than 31 levels

A procedure has more
parameters on declaration
than it had on
specification

In an array declaration,
the lower bound is greate
than the upper bound

An attempt has been made
to overlay in a segment
a variable declared in
common

Attempt to overlay a
table element

Characters ignored
until the next

terminator which is

usually the next semi-
colon. Processin
continues.

t

Ly

=
m

o
d

ROYAL AIRCRAFT ESTABLISHMENT

$200 CORAL COMPILER

USERS MANUAL

Reference 4.1.3.1

Version/Date 1

Author L Grant

J
:

o
e
r

4.1.3.1

{cont.)

NUMBER MEANING _ RESULT

115

116

117

118

119

120

121

122

123

124—

125.

126

Attempt to overlay a
two~dimensional
Array

Attempt to overlay
a procedure

Attempt to overlay a
non-value procedure
parameter

Attempt to overlay an
ut-of-bounds array

element

ii
Too many items in table
preset list

Too many items in preset
list

Table element is out

of bounds

Attempt to preset where
this is illegal

Declared procedure
parameter is not the
same as specified
procedure parameter

A procedure has more
parameters on
specification than it
had on declaration

A procedure has more
than 30 parameters

A fixed procedure does
not have the same scale |

on declaration as it had
on specification

Characters ignored
until the next

terminator which is

usually the next semi-
colon. Processing
continues.

"

"
:

ee
e

|
$ vi

be
en

t

ony

ROVAL AIRCRAFT ESTABLISHMENT

 «$20C CGRAL COMPILER |

USERS MANUAL

Reference 4.1.3.1

Version/Date 1

Author ~L Grant

NUMBER MEANING RESULT

127

128

129

130

131

132

133

134

135

136

A procedure does not
have the same type on
declaration that it had
on specification

A procedure specified
as library is declared
in a segment

An attempt is made to
overlay a switch

An expression contains
non-~data references

Conflicting number of
dimensions between
array or switch
references

A data reference is not

found where a word or
partword reference is
required

A partword reference _
is found where a word
reference is required

An arithmetic expression
does not have an
arithmetic value,
probably because it
contains references to
labels, arrays, untyped
procedures, etc.

A typed primary is not
found where one is
required

A floating type primary
is used as an argument
to a word logic operator |
or on the left hand side
of a shift operator

Characters ignored
until the next

terminator which is

usually the next semi-
colon. Processin
continues.

1

tt

T
d

|

+

ROYAL AIRCRAFT ESTABLISHMENT

820C CORAL COMPILER

USERS MANUAL

Reference

Version/Date 1

Author

4.1.3.1

iL, Grant

|

5
[

{

(cont.)
4.1.3.1

NUMBER MEANING RESULT

137

138

139

140

141

142

143

144

145

The argument to ‘AND!
and 'OR' operators are.
not conditions

A non-value actual

does not match the
corresponding formal in
type and scale

The number of formal
parameters ata
‘procedure declaration
‘is not the same as the

‘number of actual
parameters used at a
call.

The argument to a
‘GoTo! is not a label
or a switch element

An answer is given for
a procedure that does

not require one, or
‘ANSWER! occurs outside
a procedure. ,

The address field of a
code statement is out

ef range

Illegal function field
of a code statement

'IF' not followed by a
condition

An identifier used as a
procedure is not a

procedure

parameter to a procedure

Characters ignored
until the next
terminator which is
usually the next semi-
colon. Processin
continues.

1

a]
 (Ge ROVAL AIACRAFT ESTABLISHMENT

9200 CORAL COMPILER

USERS MANUAL

eference 4.1.3.1

Version/Date 2

L Grant

J

—
]

(cont.)

4.1.3.1

NUMBER MEANING RESULT

146

147

148

149

150.

151

153

2 500

The address part of a

| unsubscripted array

code statement is not

a constant address

An overlay declaration
the base of which is an

would result ina
negative overlay
address

Library procedure
number not found where
required or found on a.
non-library procedure

Library procedure
number too large

A compilation unit
contains references to

unset labels

A word reference is
invalid

Fixed scale of procedure
parameter at declaration
does not correspond to

scale. at specification.

Compiler consistency
error ;

Characters ignored
until the next
terminator which is
usually the next semi-

colon. Processing
continues.

f

Compilation halts

AGE:
Reference 4.1.3.2

ROYAL AIRCRAFT ESTABLISHMENT . es

S 144 4
LU a Page

$26C CORAL CGNMPILER Version/Date 1

: 2 AANUS

l USERS M/ NuUaL Author . L Grant 1

n ; ~

i J

— PASS 1B ny

|
ci] 4.1.3.2 Warning Messages 3

r 4
[> ;

: NUMBER MEANING RESULT 4

|| 1 Illegal CORAL character | Character ignored. {

- | in source Processing continues. “

i . ; oY

|| *2 Checksum failure on Processing continues. ;

. input
A

3 Incorrect tape Processing continues. ™

LJ a, i

; 4 Rescaling operation Processing continues.

| to floating point

L | format invoked by
Compiler (if option

ry specified) _

i |

~ 5 A procedure is called Processing continues “

m4 within itself or
within a nested

A : | procedure.

a

LJ

Z * Output of warning 2 is often caused by the

output of other error or warning messages even .

i if there is no checksum failure.

|
Lo

Ls

“J
.

E
S

RGVAL AIRCRAFT ESTABLISHMENT

S200 CORAL COMPILER

USERS MANUAL

Reference

Page 145

Version/Date 2

Author L Grant

c
o

e
n

4.1.4.1

PASS 2

Error Messages

NUMBER MEANING RESULT

20

200

203

202

2500

Parity error on input

A shift instruction
of more than 36 places
generated on a normal
shift, rescaling,
multiplication or
division operation

Overflow or underflow

on fixing a real
constant (Note that
there is no error check
for overflow or under-
flow on floating a
fixed constant but this
is unlikely to happen)

920C core store full on

‘compilation ~- unit of
compilation.is too
large

A Compiler data area is
full - unit of
compilation is too
large or too complex

Checksum failure on
input

Input to Pass 2 when
errors in Pass 1 ©

Consistency error.

Compiler consistency
error.

Compilation halts

(See 3.3.2)

(See 3.3.2)

tt

a

a
_j

CAP ,
Reference 4.1.4.2 ROVAL AIRCRAFT ESTASLISHNIENT

2 > P a8 soe im: 9200 CORAL COMPILER Version /Date 1
-~ A BS fi USERS MIARNUAL Author L Grant

|

a
n

i

4.1.4.2 Object. Map

The object,map is an option which provides a map of
the object code as it is produced from the Compiler.
All addresses of object code items. are given as
addresses relative to their relevant absolute bases
which are provided by the Loader when the object
program is loaded (4.1.5.3).

The following information is produced:

(1)

(2)

(3)

(4)

The name of the compilation unit:

PROGRAM name

or LIBRARY name

The name of each section within the compilation
unit:

COMMON name
or SEGMENT name
or LIBPROC name/no.

The relative address of each data declaration
preceded by 'D';

D decimal octal data
‘address address name

The address is relative to the segment data
or common data base according to the type
of data declaration,

It must be noted that the address output for
a table element is always the address of word
O of the table.

The relative address of each label declaration
preceded by ‘L's: :

L decimal octal label
address . address name

The address is relative to the segment code
base in which the label is declared.

co

_

EAP ROVAL AIACRAFT ESTABLISHMENT
: Page 147 OC COMAL COMPILER Versi 6200 COHAL COMPILE Version/Date 1
USERS MANUAL

J
a

p
o
e

i
:

wo

+
e
e

Q
e

m
e

ct

ob

“

N)

The relative address of each switch array
declaration preceded by 'S';

Ss decimal octal switch
address address © name

The address is relative to-the segment switch
base in which the switch is declared.

The relative address of the link ane entry
point of each common or internal procedure
preceded by 'D' and 'P' ‘respectively.

D decimal octal procedure (Link)
address address name

P - ~decimal octal procedure (entry
address address name point)

The link address is relative to the segment
data or common data base according to the type
of the procedure.

The entry point address is relative to the
segment code base in which the procedure is
declared,

It must be noted that for internal procedures
the link and entry addresses are output on the
procedure declaration whereas for a common
procedure the link address is output on the
Specification and the entry address is output
on the declaration. No such information is
output on compilation of a Library procedure
since they are handled differently by the
Compiler and loader. The necessary information
can be obtained from the Loader core utilisation

information (4.1.5.2), ;

Reference 4.1.4.2

Author L Grant —

An example CORAL program with its corresponding
object map is supplied in Appendix E.

ail

r
d
d

(Ath ROVAL AIRCRAFT ESTABLISHMENT

e25C CORAL COMPILER

USERS MANUAL Author

Reference 4.1.5

Page 148

Version/Date 16/2/76

Yarious

' LOADER

Error and Warning Messages

The following messages are printed on the teletype on

occurrence of the respective error conditions when the

normal loader is in use.

NUMBER MESSAGE MEANING RESULT ©

COMMAND
ERROR

CHECKSUM
FAILURE

THIS
LEVEL
ALREADY
LOADED

LIBRARY

LOADED

ON THIS
LEVEL

NOT ALL
LEVELS
LOADED

} An invalid message
has been typed.
(If the message is

output after
typed GO), it
indicates that one
of the commands
previously input
is invalid ina
way that cannot be
checked earlier).

Checksum failure
on input of paper
tape

.An attempt is
being made to
load programs on
a level on which
loading has
already been
terminated

An attempt is

being made to
load a program
tape after a
library tape has
been loaded on
the current

level

An attempt is
being made to
terminate the

loading cE a

Awaits input of
correct command,

if ‘
& type co }

Loading halts

Awaits
input of next
tape

The tape is
rejected. Awaits
input of next
tape

A new tape is
requested

A : . Reference 4.1.5.1
ROYAL AIRCRAFT ESTABLISHMENT :

. Page 149
$200 CORAL CODAPILER .
228 EES . a Version/Date 1 .

USERS MANUAL Author -«-L. Grant

4.1.5.1

(cont.)

NUMBER |:-MESSAGE MEANING RESULT

multilevel program
before all four
levels have been
loaded

6 INVALID Probably tape is The tape is
TAPE being loaded rejected. Awaits

forwards instead of input of
backwards correct tape.

7 Name Common procedure Declarations
DECLARED |has been declared after the first
TWICE twice. are ignored
(where
name is
the name
of a
Common
Procedure}.

8 NO An attempt is being The tape is
PROGRAM made to load a rejected.Awaits
TAPE library tape before input of
LOADED any program tape (s) program tape

on the current
level

9 COMMON Common switch has Declarations

SWITCH been declared after the first
‘DECLARED {twice are ignored
TWICE

LO COMMON Separate units of Loading halts.
CHECK compilation do not
FAILURE have the same

Common

li CORE If data is being Loading halts.
; FULL loaded module 0 (see 2.5.1)

is full.
Tf code is being
loaded modules O
and 1 are full.

12 COMMON Common label has Declaractions
, LABEL {been declared after the first

DECLARED | twice

TWICE
are ignored.

Reference 4.1.5.1 A | “
ROVAL AIRCRAFT ESTABLISHMENT a

— Ly Page 150 a4

°
Ag be Meat ES Find

a

a 626 COBAL COMPILER Version /Date i

" 8
oy

7 USERS MANUAL Author ~L Grant ‘

_, a Be

| 3

: 4.1.5.1
j

(Cont)

it

NUMBER MESSAGE MEANING RESULT -

13 PARITY Parity error on Loading halts a

FAILURE input

!
J

UNDECLARED References to Loading

ry 22 LIBRARY Library continues 7

| PROCEDURES Producedures

. not yet loaded ~

-
oe

' |
:

i

Ls UNDECLARED References to Loading “i
23 COMMON Common continues

iP PROCEDURES procedures not , ”

a yet loaded .

fo?

|

. ;

7 .
La

LJ .

UL

wi

Reference 4.1.5.2.
ROYAL AIRCRAFT ESTABLISHMENT

: Pagel51

$200 CORAL COMPILER } $260 CORAL COMPILE Version /Date 44/2/76

$s A
7 .

USERS MANUAL Author Various

e
e

e
e

ee
e

4.1.5.2

LOADER

Core Utilisation Information

The following information is output by the normal
loader as each unit is loaded:

CORE BOUNDS MOL MOU MIL MlU
UNIT NAME

- For each Common and Library procedure declared:

Absolute address of Absolute address of
ENTRY POINT LINK , PROCEDURE NAME

The loading base names and their absolute addresses:

COMMON Absolute address
of BASE

DATA !

CODE : "

SWITCH | 4

The name of each section within the unit (in reverse
order to compilation) :

SEGMENT name N-

SEGMENT name 1

COMMON name.

At the end of loading each unit, any unsatisfied
external procedure references are indicated by the

“respective messages:

UNDECLARED COMMON PROCEDURES
UNDECLARED LIBRARY PROCEDURES

Following the loading of all the units of compilation
of the program, i.e. after typing the END directive,
the program entry point is printed:

PROGRAM ENTRY absolute address

CORE BOUNDS MOL' MOU' MIL' Mlu'

For an example see Appendix E.

Reference 4.2 ROYAL AIRCRAFT ESTABLISMMENT p 152 a | age , om 2 , i
: .

920C CORAL COMPILER Version/Date’ 1
USERS MANUAL Author L Grant

COMPILER. DATA RETENSION

‘Absolute Absolute Contents Contents Contents

“f
t

DIAGNOSTIC PROGRAMS

There are no error or warning situations other than the
standard error messages for incorrect user commands(4.4.1).

OBJECT DUMP

There are no error or warning situations other than the
standard error messages for incorrect user commands(4.4.1).

The format of the output of the object dump program for
the contents of each core location is:

address address in in in
in in decimal | octal instruction
decimal octal , . form |

i\ Yo Reference
m7 (hy 1p ROVAL AIRCRAFT ESTASLISHMIENT 4.3
| ate | : Pane 153

8200 CGRAL COMPILE -
— ~ 6 a Corer en Version/Date 46/2/76

| | USERS MANUAL Author Various

a ;

|

a 4.3. . FLOATING POINT LIBRARY PROCEDURE

| ERROR
Ld MESSAGE MEANING RESULT

Li QF2 Floating point under- Execution continues

- flow, i.@. computed with floating value

‘| exponent <-64 : of zero (smallest

i value)

7 QF3 Floating point over- Execution continues
flow, i.e. computed with floating value

exponent >63 of £9°2*10" according te

ry (including division sign (largest value).

| toa : :
LJ OF4 | Overflow on fixing Execution continues

a floating number with the largest

| . positive (O1...1)0Fr
|| the smallest negative

a
e

a

L
r
o
o

L
e
,

QF5 - Underflow on fixing
a floating number - with the value of

(10...0) according
to the scale and
the sign.

Execution. continues

ZEro.

The above error mes

Octel Absolute addr

the error.

- These error messages are always output

to the teletype.

sages are followed by the
ess cf the Floating Point

interpreted instruction which gave rise to
coe

 S
e

ate

e
n
d
e
r

YAP
 S
O
R
E
N

“J

To
T CAR | Reference 4.4

 ROVAL AIRCRAFT ESTABLISHIAENT .

Page 154
S20C CGNAL CORIPILER Version /Date 1 .

USERS .MANUAL ‘Author : L Grant

4.4.1

‘the Compiler Program for input of the correct

_type (2) and (3) .cause repeated output of the

MISCELLANEOUS NOTES

COMMAND. ERRORS

Within each program of the 920C CORAL Compiling System

detection of an error in a user input command causes -
the following: .

(1) Output of COMMAND ERROR if a syntatically
incorrect command is input. ,

(2) Output of COMMAND ERROR after GOW is typed if
a syntatically correct command has been input
but the command is not applicable.

(3) Output of DEVICE SPECIFICATION ERROR after cou
is typed if the device specified with a command
is not suitable.

In each case an invitation to type is re-issued from

command followed by GOW if applicable. Errors of

respective message following each option command
input until the correct command is input.

T
T

i:

(EWP Reference 5

Page 155 .

Version/Date 1

ROYAL AIRCRAFT ESTABLISHMENT

$2GC CORAL COMPILER

| USERS MANUAL ho

. mo Aut r L Grant

m :_ «

f
CHAPTER 5

[| _ OBJECT CODE STRATEGY

in 5.1 RUNTIME STORAGE ALLOCATION

_ 5.1.1 DESCRIPTION |
5.1.2 LOADER GENERATED INFORMATION

m 5.2 DATA SPACE ALLOCATION

| | ;
: 5.2.1 DATA DECLARATIONS

m9 5.2.1.1 Data Types

[| 5.2.1.2 Space Allocation

5.2.2 ARRAY/TABLE DECLARATIONS
f 5.2.2.1 Array Types

LJ 5.2.2.2 Space Allocation

5.2.3 PROCEDURE DECLARATIONS
[| 5.2.3.1 Procedure Types

L 5.2.3.2 Space Allocation

; 5.2.4 LABEL DECLARATIONS
| 5.2.5 STRINGS

. 5.3 CODE SPACE ALLOCATION
|

i
mw 5.3.1 SWITCH DECLARATIONS

- 5.3.2 STATEMENTS
[|

a 5.4 EXECUTABLE OBJECT CODE

5.4.1 GENERAL OBJECT CODE SEQUENCES

5.4.1.1 Data Reference

5.4.1.2 Assignment Statements

5.4.1.3 Dyadic Operators

5.4.1.4 For Statements
5.4.1.5 Conditions

5.4.1.6 Procedure Handling

5.4.1.7 Label and Switch Handling

Reference 5 CAP AL ATNCRAF STABLISHMENT : i (3 RGYAL AIRCRAFT ESTABLISHM | Page 156 |

SZOC CORAL CONIPILER ; ~
. * 52 Sure . Version/Date 1

[> ge S. aan . om

m USERS, ARIUS L Author L Grant

rm cf “
foi ;
lot vd

O "
7 i

5.4.2 FLOATING POINT HANDLING ;

7 5.4.3 OPTIMISATION AND THE PRODUCTION OF EFFICIENT CODE

! 5.4.3.1 Evaluation of Expressions -
5.4.3.2 Low Level Instruction Optimisation _,

r 5.4.3.3 Data Access

5.4.3.4 Miscellaneous Optimisations ve

Z 5.4.3.5 Access of External Information a

5.4.4 MULTI-LEVEL HOUSEKEEPING CODE

i ~

Li .

[i

UL!

| o

7

|
i

«

_Reference 5

Page 1 5 7

ROYAL AIRCRAFT ES TABLISHR ENT

2 R GhA va Ge @20C CORAL COMPILER Version /Date 16/2 /6
USERS MANUAL Author

Various

OBJECT CODE STRATEGY

The aim of the object code strategy is to provide
tight, efficient code which works quickly.

This chapter may be ignored by the normal user’
Since all necessary user information is provided
in Chapter l. However, if the actual structure of
the object code is of importance to the user a
general description is provided by this chapter.

It must be noted that although the object code is
structured to run on a 920C or 905
it will also execute on any 920B, 920M or 993
such that the whole program resides in
module O, i.e. no 'set absolute! address mode
setting instructions are generated unless the Loader
is instructed to store programs above 8K and none
of the instructions beyond 15 7168, which earlier
machines would interpret as a terminate, or
sequences assuming the preservation of the Q
register after all jumps,are generated.

Any limits imposed by the object code strategy on
the user are described in 1.1.1.4:

Reference . 5,1
= GAR ROYAL AIRCRAFT ESTABLISHMENT 158
ba Page

Ld
. 9200 CGRAL COMPILE 4 7 Version /Date 1

m USERS MANUAL . Nathor L Grant.

my 5.1 RUNTIME STORAGE ALLOCATION

. 5.1.1 DESCRIPTION
- ,

i The object code of a CORAL program contains cata
te and executable code which are held statically at

runtime in the 920C core store.
co

L Data resides contiguously in core store in
module O and is absolutely addressed and code

po resides in both modules O and l.

Ls |
Each unit of compilation comprising a program has

a data and code area associated with it.

oe

The following diagram describes the runtime storage
- allocation of a program comprising a number of

units of compilation,

a) . Reference (A ROVAL AIRCRAFT ESTASLISNMENT | i Seted va

i: 200 CORAL COMPILER a : $200 CORAL COMPIL Version /Date

USERS MANUAL o
4 re Author - Li Grant ‘
Ls 4

~ MODULE Of \AN \ot7: \REGISTERS \ \\ \N "
bod \ 2 we | \\ 8 Soh Ria VAA en MOL

FIXED DATA os
. COMMON DATA

UNIT 1 DATA
UNIT 2 DATA \ DATA AREA on

i : es .
v -

: UNIT N DATA J ;

Y,
:

mo Foe

L 7

fa

(| FIXED CODE yo
UNIT N CODE MODULE O CODE

m t AREA

i Me

FIXED DATA B L
ro ~“ MO [aN b166- g179:\ aus. \LOADER \ ANE u
it \ Ls Nal eorsi9 4; intoau, gust. \ _\ «—MIL
. MODULE 1 OZ 22 PTT PPT OT TT TE ;

FIXED CODE a.
3 . * a

[|
to
bow | .

7 |
| |

= MODULE 1 CODE
| , AREA

LA |

f 1
|

7 |
Loos | -

a CODE

~ UNIT 2 CODE

7 NIT 1 CODE
a U 1 cop ed M1U

Vaan aaa
3 downwar St LOAL cope

a
n
o
r

al
l

a
n

nts a . Reference = 5.1.1
; ROYAL AIRCRAFT ESTASLISHMENT a

Page 160
Ae COEF ne 4: Lo. $260€ CORAL CORIPILER Version /Date 1

- B el fe . USERS MANUA Author L Grant
o
m

U
I

-) “The Loader loads the object program within the
module bounds: ,

MOL : Module O Lower Bound, i.e. lowest available
location in Module 0

MOU .: Module O Upper Bound, i.e. highest
available location
in Module Oo

Ml1L : Module 1 Lower bound
M1l1U +: Module 1 Upper bound

For the default values of these and the method of
specifying different values see 2.1.2.2 and 3.1.2.2.

The data area for each unit of compilation is
loaded from MOL upwards ~ the Common data area’
loaded is that which accompanies the first unit of
compilation being loaded and it is assumed that all
subsequent Common data areas accompanying the
following units of compilation are the same (a
limited number of checks are performed by the
Loader and are described in.2.5.1).

The code area for each unit of compilation is
loaded from M1U downwards in module 1 until the
remaining available space within the specified
bounds is too small for the current unit whereupon
it is loaded into module O - the remaining space |
in module 1 being used for a subsequent unit if
possible, The Loader remembers the available space
in each module and only when the code area of a
unit of compilation will not fit in either module
does it report that the core is full.

ru fi\ Fa Reference 5.1.2 “s
- Are RGVAL AIRCRAFT ESTABLISHMENT ; 4
Ly Page 161 a
= $20C CONAL COMPILER . ‘

m1 USERS MANUAL Author Verious |

5.1.2 LOADER GENERATED INFORMATION _

The fixed data areas are generated by the Loader 4
above and below the module O lower and upper

~ bounds respectively and contain information for “ny
| use by the object program or the user, i.e. -

FIXED DATA AREA A ~
i 5

| J
MOL Absolute address of level 1 entry my

| i
) MOL+1 Absolute address of level 2 entry 4

f MOL+2 | Absolute address of level 3 entry “4

MOL+3 Absolute address of level 4 entry

m7 |
Lo MOL+4 Top level indicator (1.2.3.1) Preset to 0 '

ms MOL+5 | Low level indicator (of no use) Preset to 0 wm

Lo MOL+6 Standard constants for use by ~
; | the object program

|
ot . . H

LL J] ! .
a MOL+N \ |. .

| FIXED DATA AREA B ”
LJ -

7 MOU Module 1,upper code bound, M1U °

. MOU-1 Module 1,lower code bound, X

7
Le MOU~2 Module O,upper code bound, MOU

i MOU-3 Module O,lower code bound, Y ww

~ MOU~4 -1 :

| MOU-5 “-Sumcheck (1.2.3.2)

_ The fixed code area is generated by the Loader
below the executable object code in each core
module if required by the object program and contains
inter-module and multi-level housekeeping code.
(It is not for access by the user).

_
_

Reference 5.2

Page 162

Version/Date 1

Author L Grant

a
d
.

__
]

>

—

w
e
.

b
e
c

te
re
d

c
o
o

ha
e

a
e

“y

DATA SPACE ALLOCATION

The data area of a unit of compilation contains
CORAL data (declared data and procedure parameters)
which is overlayed according to the block structure
and compiler generated data (strings, constants,
addresses, linkage information. and workspace).

The data space allocation for each item of CORAL
data is described below.

Reference 5.2.1 -
ROVAL AIRCRAFT ESTABLISHMENT a4

-| Page 163 3
=|. , , RL ist © , .

9$20C CO: AL COMPILER Version/Date 1 ~

i USERS MANUAL Author. L Grant :

[7 5.2.1 DATA DECLARATIONS, e.g. 'INTEGER' I; 4

, 5.2.1.1 Data Types

rm . .
‘Internal Data : Internal data declaration space is 7

held in the data area of the unit

oy of compilation. “%

[|
i

iz Common Data : Common data declaration space is “

7 held in the Common data area. m=

[|
L | 5.2.1.2 Space Allocation :

Ws DECLARATION NO. WORDS REFERENCE es

| 7
[| INTEGER 1 (1.1.3.3)

o FIXED 1 (1.1.3.2) .
| ; ,

!

u FLOATING 2 (1.1.3.2) “

|
U

' -
LL

(i

=
r

J

(GAP Reference (5.2.2
ROVAL AIRCRAFT ESTABLISGHRAENT .

. Page 164—
89 tea MOA Ae es APTS -

SBOE CORAL COMPILER Version/Date 1
USERS, MANUAL Author b Grant:

5.2.2.1

5.2.2.2

ARRAY/TABLE DECLARATIONS, e.g. 'FLOATING' 'ARRAY'!

Al1:10];

Array Types

Internal Array ; Internal array space is held in
the data area of the unit of
compilation.

Common Array : Common array space is hela in
the Common data area,

Space Allocation

Space for the elements of an array is allocated in
a contiguous area, the rows of a two-dimensional
array following on immediately from one another
and they therefore do not necessarily start on a
word boundary for bit and byte arrays. The first
element of all arrays always starts on a word
boundary.

The following space is allocated for an element of
each type of array:

DECLARATION NO. WORDS REFERENCE

INTEGER a 1 | - (As in 5.2.1.2)
FIXED oo 1 (As in 5.2.1.2)

FLOATING 2 (As in 5.2.1.2)

BIT 1/16 (1.2.2)

BYTE 1/2 . (1.2.2)

TABLE - . .
_ INTEGER ELEMENT 1 (As in 5.2.1.2)
FIXED ELEMENT L . (As in 5.2.1.2)

. FLOATING ELEMENT 2 (As in 5.2.1.2)
PARTWORD ELEMENT AS (1.1.4)

DECLARED

J

fe - Reference 5.2.3
ROYAL AIRCRAFT ESTASLISHMENT .

: . Page 165

g20C CORAL COMPILER
* — Version/Date 1° Z

7 USERS, MANUAL Author -L Grant

a 5.2.3 PROCEDURE DECLARATIONS, e.g. 'PROCEDURE ' PROC "

| ; (Parl, Par2,....ParN); wi

5.2.3.1 Procedure Types vr

Internal Procedure : The link and parameter space
is held in the data area of
the unit of compilation.

The link and parameter space,
together with further
information for external

communication, is held in the

Common data area. —

Common Procedure

The link and parameter space,
together with further
information for external
communication, is held in the

Gata area of the unit of
compilation in which the
Library procedure is first
referenced (first reference
loaded).

Library Procedure

5.2.3.2 Space Allocation

Space for the link, parameters and communication

information if present is allocated as:)

-3 i COMMUNICATION

-2 INFORMATION

-1L |(com & LIB ONLY)

0 LINK

1 PARAMETERS

ar

i\ Fa . Reference 5.2.3.
ROYAL AIRCRAFT ESTABLISHMENT

LU : Page 166
= ye FIR aT F CAL Ea et . $20C CORAL CGAIFILER . Version /Date 1

ry USERS MANUAL Author L Grant

J _
ct

mo 5.2.3.2
(cont.) The following space is allocated for individual

parameters: ,

PARAMETER NO. WORDS CONTENTS

Po
i VALUE As in 5.2.1.2 Value of parameter

a LOCATION 1 Absolute address
of parameter

ARRAY/TABLE 3 0 Object code
— Communication word

7 1 Absolute address
, of zeroith element

i of array

i | 2 Row length of

Li array if two
dimensional

7 PROCEDURE 2 Oo Absolute address

Ls of link
7 a Absolute address

i of entry point
i .
- LABEL 1 Absolute address

- of label

LU

|

Reference 5.2.4 ROVAL AIRCRAFT ESTABLISHMENT
: Page 167

S20 CONAL COMPILER , Version /Date , 1

USERS -MARHAL Author GL Grant

1
_—

1

LABEL DECLARATIONS, e.g. LAB:

Internal Label No data space is allocated.

Common Label A word containing the absolute
address of the label is held
in the Common data area,

STRINGS, e.g. +t&STRING>+

Although strings are not declared they are held
in the cata area of the unit of compilation in
which they are used. Fora description of their
storage see 1.1.13.3.

ne
ed

|

hy
pe
d

e
e
e

ns
 e
e

B
a
n
t
e

é

bas
iem

asa
uth

,

c
e
e
d

ine
eee

nce
il

be
an
ie

s
e
r

|
Bea

ne
eeu

it
on

te
en
th

M
e
a
g
a
n

4

Reference 7 5.3

‘Page 168 |
Version/Date 1.

Author L Grant

ROYAL AINCRAFT ESTADLISHMERNT

S2G6C CORAL COMPILER

USERS MANUAL

a
y

i

. CORAL statements.

- switch element, if in a different unit of

_the executable object code for that unit within

. Each CORAL statement is made up of one or more

CODE SPACE ALLOCATION

The code area of a unit of compilation contains
switch arrays and executable object code for the

SWITCH DECLARATIONS, e.g. 'SWITCH' SS:=S1,S2,83;

A switch array is held as a dispatch table of jump
instructions to either the switch element, if
within the same unit of compilation, or to a pair
of instructions for transferring control to the

compilation:

i.e.

6) 8 SS[1]

1 8 SS[2]

t ’
| 1
{ t

H

Nel 8. Ss{N]

All switch arrays declared within a unit of
compilation. are held above (high address end) of

the code area.

STATEMENTS

operations each of which produces an executable
object code sequence whith occupies a finite number
of words. Generally there is more than one sequence
which can be generated for a particular operation —
according to its environment. A description of the
structure of the executable object code is described
in 5.4.

T
d

a

GAVE Reference 5.4

Page 169

Version/Date 1

ROVAL AIRCRAFT. ESTABLISHMENT

$260 CORAL COMPILER

USERS MANUAL

a
f

S
e
e
s

r
o
o
t
s

L

EXECUTABLE OBJECT CODE

GENERAL OBJECT CODE SEQUENCES

The following description lists the object code
sequences generated for all CORAL operations,
Only the general sequence for each operation is
provided and it must be treated purely as a guide
to the structure of the object code since in
practice sequences are often modified according to
the optimisation being performed (5.4.3) and the
environment, e.g. it is sometimes necessary to
evaluate a complicated argument into working space
prior to. its use. It must be emphasised that the
aim has been to produce tight, efficient code
(without subroutining) which works quickly, within
the limitations of the hardware, although by only
describing the general sequences this may not
always appear so. However, it is beyond the scope
of this manual to provide any more detailed
information and it is hoped that the following
description will be useful.

.A knowledge of the 920C order code and a general
knowledge of the 920C SIR assembly code is
assumed since the sequences are described in this
form.)

A number of further symbols are used for clarity:

£f .: Function being performed, e.g. f=1
for addition

+X Absolute address of x

ws : Workspace

wsX: Workspace to contain xX

Author = = = & Grant

a Reference. 5.4.1.1 ”
in ROYAL ATRCRAFT ESTABLISHMENT |
LJ a Page 170 “

: yA EIRG
_ $200 CORAL COMPILER Version /Date 1 my

Ly TTT o 4 ; 3

iz USERS MANUAL Author L Grant 3

. mf ~
ig

?

: wd

7 5.4.1.1 Data Reference |
a

7 This section describes the sequences generated for

1 edch type of data access. For the use of each |
item there are normally two associated sequences: od

7 (1) Accessing the VALUE of the data item for

use in an expression. J

oo (2) Accessing the ADDRESS of the data item
for use in a 'LOCATION' expression and “

. on the left-hand side of an assignment wl

ms statement.

| 7
Ls. d

| OPERATION SEQUENCE 4
LJ _d

- ;
1 | , 4

Li} Access of an actual declared
variable or a formal by value -

‘e parameter:

~~ VALUE of V. f Vv

i ADDRESS of V £ +V 7
on)

. Access of a formal by location .
i parameter: .

ca VALUE of V ° Vv
= 7f ae) -

ADDRESS of V £ Vv

Access of an actual or formal
whole word array or table

element:

VALUE of A{index] Evaluate index into accumulator
on 1 +ALo]

5 B register
Z - f/f °
7

ADDRESS of ACindex] Evaluate index into accumulator

1 +ACo]

Reference 5.4.1.1
i. ROYAL AISCRAFT ESTABLISHMENT
ke Page 171

9206 CORAL COMPILER oo

i ” ; ee E . Version /Date 1

7 USERS MANUAL Author L Grant

OPERATION SEQUENCE

Access of an actual or formal
bit or byte array element:

“VALUE of Af[index] (bit)

(byte).
By

_ VALUE of A[index]

ADDRESS of A[I]

Evaluate index into accumulator

‘14— 8188 .
1 _ +A[o]
5 B register
4 ‘+0

14 4
5 -Wws

/4 ae)
fe) ws

/14 8177
6 +1

Evaluate index into accumulator

14 8191
1 +Afo]
5 B register
4 “+O

14 1
5 ws

/4 fe)
fe) ws

Vie) shift modifier

/14 8183
6 +511

Use in 'LOCATION' expression

illegal. For use on left-
hand side of assignment —
see 5.4.1.2

Access of an actual or formal

partword table element (For a

description of the result of

a partword table element
access see 1.1.4.3):

VALUE of Afindex]

ADDRESS of Af{index]

L
5

/4&
14

(14

Evaluate index into accumulator

_ .+tALo]

6

Use in 'LOCATION!' expression
illegal. For use on left-hand

side of assignment see 5.4.1.2.

B register

ae)
shift value
shift value -

only for sign
regeneration)

mask value

CAP Reference

coal

A ROYAL AIRCRAFT ESTABLISMMENT 3+4.1.1 4
LL . Page 172 ad
~ 920C CORAL CORPILER . ;

. Version/Date. 1 “4
[| USERS MANUAL Author L Grant :

| ri -
i OPERATION ‘SEQUENCE j

ae “Access of a partword. (For a “4
description of the result of a A

‘partword access see 1.1.6.3).

I VALUE of 'BITS'[x,y]V 4 V i
mo , 14 shift value _

6 ° mask value -y
ey

i j
L | ADDRESS of 'BITS'[(Cx,y]V Use in 'LOCATION' expression wd

; illegal. For use on left-hand
ry side of assignment see 5.4.1.2. -

i 3

m Access of an anonymous “4
1 | reference: F
{i wl

oy VALUE of [V] ° V _

|| ft ° :
Loi aad

ADDRESS of [Vv] £ Vv
my ~ i | 4 wad

Access of a constant:

- VALUE of +k f +k

= ADDRESS of + k Illegal a

f “
! oo

J -

Bits
S200 CORAL COMPILER

USERS MANUAL

ROYAL AIRCRAFT ESTABLISHMENT
Reference 5.4.1.2

Page 173

Version /Date 2

L Grant Author

(5.4.1.2 Assignment Statements

The section describes the general sequences
generated for each type of assignment statement.

OPERATION SEQUENCE

Assignment to a whole word:

Viex 4 xX

5. Vv

Assignment to a bit or byte
array element:

Alindex]:= x Evaluate index into accumulator

14 8188 - if bit
8191 - if byte

1 +Al 0]
5 wsl
4 +0

14 —~- 4- if bit
l- if byte

5 ws2
fo) wsl

{4 °
.o) ws2

/6 mask value
5 ws3

4 xX
.o) wsl

/O | shift value
 f14 fo)

ro) ws2
/6 . mask value

1 . ws3
° ws2

/5 oO

Assignment to an actual or
formal whole word array or table

element .

A [index] := X Evaluate index to accumulator

1 +ALO]
5 1
4 xX

/5 Oo

a
l

—

(GAM
~«

ROVAL AIRCRAFT ESTASLISHMENT

ONAL COMPILER tf
) $26€ €

USERS | MANUAL

Reference

Version /Date

Author

5.4.1.2

4
a

L Grant

—_
]

-
]
-

c
o

l
i

1

OPERATION _* ISEQUENCE

‘Assignment to a partword table
element: -

 Alindex]:=x
. : i 1

N
n

A
k
e
O
 U
l

h
e
t

M
O
H

A
h
A
W

~

Evaluate index into accumulator

+Afo]
wsl
wsl
ro)

mask value
ws2
x

shift value
mask value

ws2
wsl

fo)

Assignment to a partword:

'BITS'Lx,y]V:=X

te

O
E

DA

m
e

U
D

Vv
mesk value

wsl
4

shift value

mask value
wsl
V

5.4.1.3 & i }2 . “+ - Reference
olic HOYAL AIRCRAFT ESTABLISHMENT

> CORAL COMPILE ; i 9206 CORAL COMPILER , Version /Date 2

USERS MANUAL Author L Grant 4 . ; ,

'
7 z

UI 5.4.1.3 Dyadic Operators

I This section describes the general sequences
t generated for the operations: +, -, /, MASK,

UNION, DIFFER, LEFT AND RIGHT,

[It must. be noted that if any argument of an operator
requires rescaling (1.1.9.2), other than those of *

mo or / which automatically contain their rescaling
| operations, the rescaling is performed before the

use of the argument within the sequence,

P i.e. evaluate argument into accumulator
Lo 14 shift value
_ (6. mask value)

' OPERATION SEQUENCE

— ADD: Al + A2 4 Al
| 1 A2

. SUBTRACT : Al - A2 - 4 2
Ll

2 - Al

L MULTIPLY : AL * A2 4 Al
(including any necessary 12 A2

] rescaling). 14 shift value
|

~ 4 Al
DIVIDE: Al / A2 , : oO +0
(including any necessary 14 shift value

— rescaling) , 13 A2

(14 8191)
| or 4 Aa

Lo O +0

14 shift value
i | 5 — ws

us 4 Al
13 ws

| (14 8191)
|

ry “

|

|

Poni

. AGE . an Reference
. 5 ROYAL AIRCRAFT. ESTASLISHSAENT. ww Pa 176 im ge
i $266 CONAL COMPILER wan [Pat = Version /Date

USERS MANGAL Author L Grant = , . .

7 OPERATION - SEQUENCE

‘ MASK: Al 'MASK' A2 4 Al
— 6 A2

| 3
UNION: Al "UNION' A2 4 A2 7 2 -1

5 ws
4 Al

r 2 0-1
Ls 6 ws

2. ~

PZ DIFFER: Al 'DIFFER' A2 4 A2
- 6 Al
— 14 1
| 6 777776, °
LJ 8

2 A2
c 1 Al

- LEFT: Al 'LEFT!' A2 fe) A2
| 4 Al

_ 2 +0
2 8 } Clear 9

/14 fe)

RIGHT : Al 'RIGHT' A2 4 A2

2 +0
: 5 B register

; 4 Al
/14 ane)

[

|

La

_]
 GAVE ROVAL AIRCRAFT ESTASLISHMENT

S20C CORAL COMPILER

USERS MANUAL

Reference 5.4.1.4

Page 177 ‘

Version / Date

L Grant. ‘Author

-_
_d

—

r
e

J

5.4.1.4 For Statements

This section describes the general sequences
generated for each type of FOR statement,

OPERATION SEQUENCE

Simple forelement: 4 A2

"POR! Al:=A2 'DO'... 5 Al

"po statement

While forelement: 4 A2-
‘FOR' Al:=A2 'WHILE'A3'DO'... 5 Al

REP: evaluate condition A3

and jump to TRUE or
FALSE accordingly

TRUE: 'DO' statement
8 REP

FALSE:

Step forelement: . 4 A2
'FOR' Al:=A2 'STEP'A3'UNTIL' 5 Al

A4'DO'... 4 A3
5 wsA3

4 A4
5 wsA4

REP: 4 Al
. ‘2 wsA4

12 wsA3 .

‘9 FALSE

’mo' statement
‘4 wsA3
1 Al

Bes) Al

8 REP
FALSE:

—]

_
d

y 2
tah

at
te

ay,

p
o
y

4

a

a
e

a
d

Rc

ne
a

7

c
o

wa

Oo) , Reference. .4.1.
(& t ae ROYAL AIRCRAFT ESTABLISHMENT 364.2 >

$200 CORAL COMPILE : . 2°
. £20 AL COMPILER ~ Version/Date. *

USERS MANUAL Author. — L Grant

5.4.1.5 | Conditions

This section describes the general sequences
generated for:

Relational operators - §EQ,NOTEQ,GR,GE,LT,LE
Boolean operators - AND,OR .

Conditional expressions and conditional statements

OPERATION SEQUENCE

BQ: Al = A2 40 Al
2 A2
7 TRUE

8 FALSE

NOTEQ: AL #.aA2 4: Al
2 A2
7 FALSE

8 _ TRUE

GT: Al > A2 4 Al
2 A2
9 TRUE

8 FALSE

GE: Al = A2 4 A2.

2 Al
9 FALSE

8 TRUE

LT: Al < A2 4 A2
2 Al

. 9 TRUE
° 8 FALSE

LE: Al < A2 4 Al
2 A2
90 FALSE

8 TRUE

y
‘ Cau

stu
rti

ine

e Pa
es

- No Reference 5.4.1.5
Py Ar ROYAL AIRCRAFT ESTASLISHMENT
| : Page 179

. ° 200 CORAL COMPILE aoa : _ 8206 CORAL COMPILER Version/Date 1 |

- USERS MANUAL Author L Grant

cE OPERATION ‘SEQUENCE

~ AND:
condl 'AND' cond2 ‘AND!

cond3 evaluate cond 1
ma (can be combined with ORs) TRUE(1): evaluate cond 2

{
. '

a 1

TRUE (N-1):evaluate cond N
7 TRUE(N): consequence

9 8° END
| FALSE (14N): alternative
if

END:

[
L| OR: ; .

condl 'OR' cond2 'OR' cond3... evaluate cond 1
my (can be combined with ANDs) FALSE (1): evaluate cond 2

ut :
1

mF i}

| FALSE (N-1) revaluate cond N
of TRUE (1+N): consequence

8. END
[| FALSE(N): alternative
Li END:

fo
i | Conditional expression/

statement: evaluate condition
[3 and jump to TRUE
Lo : , : or FALSE |
=~ ‘IF' cond 'THEN' consequence TRUE: consequence

| & END
|| ‘ELSE' alternative FALSE: aiternative
bn . END?

Reference. tifa ee 5.4.1.6 “

a ROYAL AIRCRAFT ESTABLISHMENT 4

= Page 180 ~
4 20C CGHAL COPAPILE! 620C CGRAL COMPILER Version /Date 1 on

) 74 ALA ALE. 4
, | USERS MANUAL Author L Grant }

L 7

m 5.4.1.6 Procedure Handling 4

This section describes the general sequence 7

ms generated for procedure declarations and calls, *

r OPERATION SEQUENCE 4

m Procedure call: ~

i PpoC (Parl, Par2,...., ParN) evaluate Parl into acc 3
5 param space

7 evaluate Par2 into acc
5 param space =

{

F !
U

evaluate ParN into acc
oT!

LU il LINK call wx!

8 ENTRY PROC :

ry

~ Procedure declaration: ~

my 'PROCEDURE'PROC (Parl,Par2,..6, .

LU ; ParN) 5 last param space

~ parameter housekeeping ok

;
i code

: procedure body ,

!
‘| ;

.
{
'

i! . i
EXIT: O LINK ™

[| /8 1
L

Answer statements. 4 A
8 EXIT

i

Ld

‘ANSWER! A

_d

Er

a

GAR ROYAL AIRCRAFT ESTABLISHMENT

. $200 CORAL COMPILER

USERS MANUAL |

Reference 5.4.1.7

Page i81

Version/Date 1

Author L.Grant

—
T
7

on
i

“5.4.1.7 Label and Switch Handling -

This section describes the general sequences
generated for label and switch access.

OPERATION _ SEQUENCE

Label access:
‘coro! £ 8 L

Switch access: 4 N. (cause
‘GOTO! SSIN | 1 +SSlo) transfer ta

8 Xx Switch via

' a Compiler
generated
fixed
sequence)

to
]

-
d

: Reference 5.4.2

ROVAL ALACRAFT ESTABLISHMENT
Page 182

§20C CORAL COBRIFILER : Version /Date 46/2/76

. : oe
i app.

USERS MANUAL | Author various

point package (2.3).

FLOATING POINT HANDLING

The standard Elliott 920C Floating Point package, OF,

has been used as a basis for the object code floating

Any floating operation produces eject code which is

interpreted by the Compiler Floating Point Library

Package, CAPQF, (which is supplied in relocatable binary form).

The floating point object code sequences are basicaliy

similar to integer and fixed point sequences (5.4.1)

with entries to, and exits from, the floating point

package generated according to the following rules:

(1) Access of a floating item is preceded by.

an entry to QF it not currently in floating

mode.

(2) Access of a non-floating item is preceded ™

by an exit from QF if currently in floating

mode.

(3) Instructions 7,8,9,11 and 15 cause

automatic exit from floating mode prior

to execution.

It must be noted that there has been no attempt

made to especially optimise the object code for

floating operations and therefore certain constr

are relatively inefficient.

ucts

Reference 5.4.3
ROYAL AIRCRAFT ESTABLISHMENT 183

- Page
Qerper ery z PRY ae ee . . .
$206 CORAL CONIPILER Version /Date 1

Fmd And Le RUE .

USERS MANVAL Author » L Grant

J

—
_
—

OPTIMISATION AND THE PRODUCTION OF EFFICIENT CODE

This section describes the main features of the

optimisation performed by the 920C CORAL Compiler,
together with notes for the user on the production
of efficient object code from a CORAL program.

It is not within the scope of this manual to
provide an exhaustive description of the object
code but it merely presents a guide to the structure
of the code and notes on any specific important
optimisations.

A detailed knowledge of 5.4.1 is assumed since the
descriptions of the optimisations are presented as
the effects on the general code sequences.

In the following description frequent reference is
made to Chapter 1 where the structure of the

object code which directly affects the user is
described. ,

Reference 5.4.3.1
ROYAL AIRCHRAFT ESTASLISHRIINY .~e

Page 184

S20C CORAL COMPILER | URAL Version/Date 2

USERS BLA NUAL Author — L Grant

9

]
o
d

a
w

c |

5

C
c
o
m

(1)-

5.4.3.1 Evaluation of Expressions

Re-ordering of Arguments

“This is by far the most important optimisation
performed by the Compiler in that it has the
most significant effect.

In general the Compiler re-organises the
arguments of operations to produce more
efficient code.

e.g. A + B'MASK'C is evaluated as B'MASK'C + A

Unoptimised x) Optimised /

4 AS 4 B.
5 ws = 6 Cc
4 B 1 A
6. C

1 ws

This is mainly applied to expressions but is
also applied to certain other types of operation.
In the above example, if A,B and C are function
calls the optimisation is not performed in order
to adhere to the Official Definition (1.1.9.6
and OD 6.1.3).

It must be noted that the Compiler does not
extract. and evaluate sub-expressions which are
used several times. It is the responsibility
of the CORAL programmer to ensure that such
expressions are only evaluated once into a
temporary workspace and it is that which is
used subsequently in place of the expression.

B*C + D;
F/(B*C) + (B*C)/G;

e.g. As
Es oi
l

should be written as:

X:= B*C;
As= X+D;
E:= F/X + X/G;

Similarly, repeated use of the same partword
should be avoided.

wo
we
d

Le
ne
 e

rat
aat

!
G
e
a
v
i
n
e
e
e

a

| r
e
e

ba
n.

q
a

: Reference _ 5.4.3.1. ROYAL AIRCRAFT ESTADLISHMENT " Page 185
c CGRAL COPPILE! S266 Caer AL € FI ER Version /Date 1

USERS MANUAL
Author ' ZL Grant

5 ede Sel
(cont.) (2)

(3)

(4)

(5)

(6)

Evaluation 6f expressions and assignment

- immediately followed by division with arguments

Rescaling

statements with arguments of different scales
will automatically produce rescaling code
sequences (1.1.9.2) which obviously degrade the
efficiency of the object code. Integer or
fixed point working is more efficient than
floating point working and in general. it is most
efficient to use variables of the-same scale.

Compile Time Arithmetic

See 1.1.9.3.

Multiplication and Division

The object code for division is relatively
inefficient due to the structure of the hardware
and the necessity to maintain accuracy (1.1.9.5).

An additional feature is provided which
maintains a double precision intermediate result
between a multiplication operation which is

of the same scale (1.1.9.2.).

Multiplication and division by constant values
which are powers of two are not optimised into
the equivalent shift instructions.

Rounding

See 1.1.9.5,

Function calls within expressions as value
parameters

See 1.1.9.6.

BANE _& OVAL AIRCRAFT ESTABLISHMENT
Reference

Page 186.

Version/Date 2

Author |

B20 CGNAL COMPILER

USERS MANUAL

5.4.3.2

L Grant

f Be
s

b
a
t

2
aa
d

k;

C
C
O

924.3.2 Low Level Instruction Optimisation

(1)

(2)

A and B Register Optimisation

The Compiler 'remembers’ the contents of the
hardware and floating point (software)
accumulator and B register when they contain
simple data or constant values and redundant
instructions which reload these registers
are usually avoided.

@.g. As=B;

C:=A + D;

Unoptimised x Optimised /
“&B 4 B
A 5 A -

A “td — D
D 5 Cc
Cc .

U
l

mm

U1

&

It must be noted that the Compiler only
remembers the 'latest' contents of the register.

A:=B will generate
C :=A

@.g.

but
:=B will generate
s=B

4
5
3

U
m

Q
>

Q
A
w
P
r
 wv

(Ace
(Ace

(Acc

(Acc
(Acc

(Acc
(Acc

f
o
i

ou
fo

b
o
n
y

A change to or from floating point mode

point registers.

Shift and Mask Optimisation
e

B)
A)
Cc)

B)
A)
B)
C)

will
automatically: cause the Compiler to ‘forget!
the contents of the hardware and floating

Redundant shift and mask instructions within

rescaling, mulitplication, division and
.partword handling operations are not generated.

Similarly, consecutive shift and mask
instructions are combined {other than those
generated from a user 'RIGHT' operation which
is generated as specified since it mav be
written for sign regeneration).

a

e
e

3 at
t,

3

L e
r
e

Ba
nn

ed

ROVAL AIRCRAFT ESTADLICHMENT
Reference 5.4.3.2

: Dann, L187 F _. rage
8200 CONAL COMPILER . #20 HAL GOMPELER Version/Date 2

SERS MAR g é : USERS MANUAL _ Author L Grant

5.4.3.2

(cont.)

(3)

This is particularly important when both the
left and right~hand sides of an assignment

.statement are partwords,

e.g. 'BITS*L3, LIA:= 'BITS'L3,151B

Unoptimised x Optimised /
4 A 4° A
6 +777761, 6 +777761,
5 ws i 5 ws
4 B og B .
14 8177 Access 14 8178
6 +7 part- 6 +16,

word oe
14 i pAssignnent 1 ws
6 +16, [to part- 5 A

word - 1 ws
5 A

Jump Optimisation

A jump instruction to a compiler generated
label which labels a jump instruction to a
source label causes the latter not to be
generated and the former to be generated as a
jump instruction to the source label.

e.g. ‘IF' A=B 'THEN' 'GoTO' xX 'ELSE' 'GoTo' y

Unoptimised x : Optimised /

O
M

MO

M
O
W
N

S
X

D
e
e

oo

c
w
 N

KE

ty

CAP Reference 5.4.3.2
ROVAL AIRCRAFT ESTABLISHMENT mo Page 188 . von | . 926 CGRAL COMPILER Version/Date 1

_ USERS MANUAL Author L Grant ™ | i
oe Mae

, .

— 5.4.3.2 | , ,
(cont.) Also, a jump instruction to a compiler generated °

label on the next instruction is removed. ~

i @.g. ‘PROCEDURE! PROC; “ 7 'BEGIN' .
“PROC BODY

I ‘ “ ; t .
_ ‘ANSWER' A ~

‘END! ;

7 Unoptimised x Optimised / 7

/ PROC body PROC body
rm
I |

‘ { “ 4 A 4 A
— . 8 EXIT (EXIT:) O LINK

| (EXIT:) 0 LINK /8 1
+ /8 1 °

|

|

a
d

Reference . 5.4.3,3> ROWAL AIRCRAFT ESTASLISHMENT
Page 189

Aa RA GP F Ae Os ee birch kd a . PF ho Phe CORAL Yo BS EVE iLeR Version /Date 1

USERS MANUAL Author L Grant

as

3.4.3.3 Data

mF

Access

(1)

(2)

Data Overlaying

Data is overlayed according to the block
structure of the CORAL language (OD 3)
However, it is recommended that the 'OVERLAY'"
declaration facility be used to economise
even further on data space or to add clarity
to a program (1.1.5 and OD 4.8).

Array Access

Access of an array element (other than bit or
byte) with a constant index between O and
8191 causes the generation of an optimised
code sequence, ,

e.g. Access of A[6]

Unoptimised x Optimised /
4 +6 re) +A(O]
l . +A(O] ff 6
5 B register

/f£ fe)

This is the only optimisation performed on array
access and it must be recognised by the user
that array access with a variable index,
particularly two-dimensional, is inefficient.

Bit/byte array access is necessarily inefficient
and unless a large quantity of such data is
required it is recommended. that it is held in
a different form, i.e. within a whole word
array or a table. Alternatively in some cases
it may be possible to overlay the array with a
table with elements of equivalent structure to
‘increase efficiency - however this may well not
‘be convenient, —_

(3)

”

Anonymous Reference

As with array access the use of an anonymous
reference with a constant index between 0 and
8191 causes the generation of an optimised
code sequence.

Reference 5.4.3.3

x oF
att

i] (HAVE RGYAL AIRCRAFT ESTABLISNMENT) |

7 he , Page 190 3
— $20C CONAL COMPILER Version/Date 1

7 USERS MANUAL Author L Grant q

cm zt “sy

i

/ 5.4.3.3 | |]
(cont.) e.g. Access of [6]

[| Unoptimised x Optimised }
sO 6) +6 £. 6 ”

/£ @) -

We

e
e
d

o
N

o
N

|

o
t
e

I
1

L
e
e

t
r
i
e

nel

(4)
‘element) |

‘lesser degree partword access is necessarily

_repacked into the partword form after use -

Partword Access ('BITS' or partword table

As for bit and byte array access but to a

inefficient and should be avoided as far as
possible. Unless a large quantity of such
data is required it is recommended that it is
held in a whole word form. Alternatively a
set of partword information should be unpacked
into whole word working space before use and

both operations being performed by general

purpose procedures.

As stated previously the Compiler will not
generate redundant shift or mask instructions.

an
e)

ad

i
4

Be
,

gr
ue
ee
ll

(Cle C RGVAL AIRCRAFT ESTASLISHMENT
Reference 5.4.3.4

Page i91
206 CORAL COMPILE _ | $206 CORAL COMPILER Version/Date 1

USERS MANUAL Author L Grant

-—_

5.4.3.4 Miscellaneous Optimisations

(1).

(2)

(3)

Assignment Statement : . .

The 920C increment instruction is used in a simpl
assignment statement if applicable.

e.g. As= A+ 1;

Unoptimised x Optimised /
4 A 10 A
1 +10
5 A

For Statements

If there is only one FOR element the ‘po!
statement is obeyed inline otherwise it is
made into a subroutine which is generated
following the code for the FOR statement
(a call to the subroutine being generated in
the position of the 'DO' statement within the
FOR statement code).

The following notes apply to a FOR statement
with a STEP element: oo

‘FOR! Al:=A2 'STEP' A3 'UNTIL A4 'po! eee

(a) If A3 and A4 are constants they are not
@valuated into working storage but are
used directly.

(b) If A3 is a constant the sequence for
determining exhaustion of the loop is
optimised to a simple subtraction since
only the sign is required.

(c) If A3 is the constant +1 the 920C
increment instruction, 10, is used for the
updating of Al.

Procedure Parameters

On a procedure call parameters are set up in
the procedure parameter space before transferring
control to the procedure except for the last
parameter which is passed via the accumulator.
Single parameter procedures are therefore
relatively efficient and care should be taken to
ensure that further parameters are necessary -
Common data space being an alternative.

(GP
Reference 5.4.3.5

ROVAL AIACAAFT ESTABLISHMENT
Page 192

ORAL COMPILE pa:
“© COMPILER Version/Date 1

sens, MANUAL Author — L Grant

u
a
t
e

344.3.5 Access of External Information

The structure of the object code has been designed.

such that access of external information, i.e.

outside the current unit of compilation, usually

incurs very little overhead to that of internal

information. The method of external access is

described below together with access of formal

procedure parameter information to which it is

analagous.

(1) Data Access

All data lies within the lower 8K and is

always directly addressed.

Common data access is therefore identical

to internal data access.

Formal data access is similarly identical

except for formal by ‘LOCATION' parameter

access (5.4.1.1).

(2) Procedure Access

If a Common procedure is loaded into the

same core module as its call the normal

procedure call instruction pair is generated:

Al LINK
8 ENTRY

Therefore by careful program loading no

overhead will be incurred.

However if a Common procedure is loaded in a
different core module from. its call there is

still only a two word call generated:

11 a
8 b

which cause transfer to the procedure via a

further pair of compiler generated instructions

for that procedure and a compiler generated

linkage procedure. The overnead is therefore

Reference 5.4.3.5
ROYAL AIRCRAFY ESTASLISHMENT ,

Page 193
Ar Oem Aa et BAERS & es . ; :
E206 Nae Gat 6S FE hn SOM as. 6. Version /Date 1

USERS MANUAL Author L Grant

5.4.3.5

(cont.)

(3)

‘Therefore any reference to the label within the

at the head of a procedure for a formal label

two instructions per procedure declaration
(not call) of such a procedure plus a single.
general purpose linkage procedure (approx 15
words) which is used for all inter-module
procedure calls from the current module,

A formal procedure call always causes the
generation of three instructions:

oO Cc

ll a
8 e

which causes transfer to the procedure via the
above compiler generated linkage procedure
(since the position in core of any corresponding
actual procedure is unknown}.

Label Access

A pair of instructions are generated at the
head of a unit of compilation for a Common
label and they transfer control to the label
via a three word general puxpose module :
relativising sequence which only occurs once
per module:

L's: 4 absolute address of label L

8 module relacivising sequence

unit of compilation only gemerates a single
jump instruction which transfers control to the
label via this two word pair:

8 L!

A similar pair of instructicss are generated

such that all references to the label are
generated as single jump ins<ructions.

k an Reference _ 544,3.5 75
— GAR ROYAL AIRCRAFT ESTABLISHMENT : 2 2643.5
[| 194 j
{ \>

Page at

_ §26C CORAL CONIPILER Lo: .
- ORAL COMPILE Version /Date 1 -

rr USERS. MANUAL . — Author L Grant |
Lo a ; &

.

- 5.4.3.5 . . *

(cont.) (4) . Switch Access :

a In order that all switch element accesses are ~

[only three instructions in length,internal,
Common and Formal switch element accesses are .

identical: . , i
on ; - :

| 4 Index ws

1 + SSCO]
8 module relativising sequence ™

‘(as in (3)) .

~ (This has a slight time overhead if the “

fi switch is internal). ;

7
|

[/ -
+ |

(i
-

Lo:

=

o
d

n
n

|

(RP
‘
'

ROYAL AIRCRAFT ESTABLISHMENT
Reference | 5.4.4

Page 195
Version/Date 16/2/76

Author Various

MULTI-LEVEL HOUSEKEEPING CODE

A knowledge of 1.2.3.1 is assumed. 1
interrupt handling housekeeping code
by the Loader as the segments of a mu
program are loaded,

he following
is generated
lti-~level

The following code is generated by the Loader in the fixed code ere@ of module oO. The PROGRAM ENTRY POINT supplied by the Loader (4
START.

-1.5.2) is at

RESTART 4 _-1

5 TOP LEVEL INDICATOR (~1> AUTOSTART)

START 4 =8 RESTART (Set up AUTOSTART)
5 8177 — ,

; (Set up low leve
| +L28S SCRs)
5 2 ’
4 +L38S
5 A
4 +L4S
5 6

15 9 7177 . (14 0 if program
loaded in ‘module 0)

0 +L15S
/8 O

_ Reference 5.4.4

Page 196

Version/Date *

Author L Grant

SEGLEV1L VA

The following code is generated enveloping the
segments of each level and may therefore reside in
any module . .

ven /

SEGMENTS

/Seciteyes

2 Liq > (reset: A & Q)
4 LA

15 7168
‘L1S 5 7177 (14 0 if program loaded

5 LIA in module 0)

14 18
5 L1Q
4 +1
5 TOP LEVEL INDICATOR (+1 INTERRUPT)
8 SEGLEVL .

SEGLEV2 Aster 4
, LEV

/SECMENTS

LLL)

L2Q
L2A

7168
7177
L2A
18
L2Q
+1

LOWER LEVEL INDICATOR |
SEGLEV2

p
s

a

O
U

U
B

O
U

O
N

L2S

coed

i Reference 5.4.4
ROYAL AIACRAFT ESTABLISHMENT

Page 197
e260 CORAL COMPILER Saee CO mete Version/Date 1

ERS MAN
USERS MANUAL Author L Grant

SEGLEV3 [7
noe Venton 3

f

SEGMENTS
LLL

2 139
4 L3A

15 7168
L3S 15 7177

5 L3A
14 18

5 130
4 +1
5 LOWER LEVEL INDICATOR

8 SEGLEV3

LEVEL, 4
\/ ‘A
SEGMENTS J
4 L

SEGLEV4/L4S | / /

8 SEGLEV4

NOTE: The 8 SEGLEVn instruction is generated as 8 ; +0
unless the last segment of a level ends with

. 'GOTO' first segment name; .

Reference Appendix A

"Issue" 3R/ “f
a

Author. “LS Grant

ay

o
o

“Actualist = Actual

Address = Signedinteqer

- Booleanword2 = poo reanword3

Booleanword4 = Booleanword

APPENDIX A.

920C CORAL SYNTA3

As described in the Cfficial Definition of “CORAL 66
together with the implementation dependent features
and enhancements, :
Actual = Expression _

Wordreference
--~- Destination

Name

Actual, Actualist
Addoperator = +

Addoperator Fraction
- Td |

Alteriuative = Statement
Answerspec = Numbertype

Void
Answerstatement = ANSWER Expression
Arraydec = Numbertype ARRAY Arraylist Presetlist

. BIT ARRAY Arraylist Presetlist
BYTE ARRAY Arraylist Piesetlist

Arrayitem Idlist [Sizelist]
Arraylist = Arrayitem-

Arrayitem, Arraylist
Assignmentstatement = Variable <« Expression

Base = Jd
Id {Signedinteger]

Bitposition = Integer ,
Block = BEGIN Declist ; statementlist END
Booleanword = Booleantvord2

Booleanword4 DI FFER Booleanword5

BooleanwordS UNION Booleanword6é—
Booleanword3 = Shiftwora ,

Booleanword6 MASK Shiftword2

Typedprimary
Booleanwords = Booleanword2

: . Typedprimary
Bocleanword6 = Booleanword3

Typedprimary
Bracketedcomment = (any sequence of characters in which

round brackets are matched)

Codeinstruction = Label: Codeinstruction
Simplecodeinstruction

Codesequence = Codeinstruction
Codeinstruction; Codesequence

Codestatemont = CODE BEGIN Codese auence END
Common = Commo oncommunicator ;

: Veet eT . : we aes

a
n
e
 GAP Reference Appendix A

Page 199 (cont'd)

fersion /Date 2

Author L.S Grant

S200 CORAL COMPILER

USERS MANUAL

-Commoncommunicator = COMMON Id (Commonitemlist)

Comment sentence = COMMENT any sequence of characters

not including a semi~colon;

Commonitem = Datadec
Overlaydec

Placespec
Procedurespec

Void
Commonitemlist = Commonitem ,

Commonitem ; Commonitemlist
Comparator = < or < or = or 2 or > or #.
Comparison = Simpleexpression Comparator Simpleexpression
Compileunit = Program

Commoncommunicator
Library

Compoundstatement = BEGIN Statementlist END

Condition = Condition OR Subcondition
_ Subcondition

Conditionalexpression = IF Condition
THEN Unconditionalexpression
ELSE Expression

Conditionalstatement = IF Condition THEN Consequence
. IF Condition THEN Consequence

ELSE Alternative
Consequence = Simplestatement

Label] : Consequence
Constant = Number

Addoperator Number
Constantlist = Group ,

Group, Constantlist
Coralunit = CORAL Compileunit FINISH

i

Datadec = Numberdec
Arraydec

; Tabledec
Dec = Datadec

Overlaydec
Switchdec

' Proceduredec
Declist = Dec :

Dec ; Declist
Destination = Label

Switch [Index]
Digit = 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 39
Digitlist = Digit

Digit Digitlist
Dimension = Lowerbound : Upperbound
Dummystatement = Void

”

CAP. Reference APPendix A
ROYAL AIRCRAFT ESTALLISHIMENT " mae “eee Page 200 (cont'd)

§20C CORAL COMPILER —
Version/Daie 2

MAINTENAN B BOCUMENTATION
Author L S Grant

‘Blementdeclist = Elementdec

Forlist = Forelement

Index = Expression

Elementdec = Id Numbertype Wordposition
Id Partwordtype Wordvosition, Bitposition
Id Partwordtype Wordposition BIT

Bitposition

Elementdec ; Elementdeclist
Elementpreset list = PRESET Constantlist

Void
Elementscale = (Totalbits, Fractionbits)

(Totalbits)
Endcomment = Id
Expression = Unconditicnalexpression

Conditionalexpression

Factor = Primary

Booleanword
Forelement = Expression

Expression WHILE Condition
Expression STEP Expression UNTIL Expression

Forelement, Forlist
Forstatement = FOR Wordreference + Forlist DO Statement
Fraction = .Digitlist

Fractionbits = Signedinteger
Function = Integer

Gotostatement = GOTO Destination
Group = Constant

(Constantlist)
Void

Id. = Letter Letterdigitstring
Idlist = Id

Id, Idlist

Integer = Digitlist
. OCTAL (Octallist)

LITERAL (printing character)

Label = Id

Labellist = Label

| Label, Labellist
Length = Integer

Letter =a or b or c or0r Z
Letterdigitstring = Letter Letterdigitstring

Digit Letterdigitstring
Void

GAtke
L
d

Reference Appendix A
SHMENT

Page 201

' VYersion/Daite 1
SER MAR UAL

US Author Ls Grant

(Cont'd)

a

|

‘Libproceduredeclist = Libproceduredec

Libprocedureheading

_ Lowerbound = Signedinteger

Liblist = Libspec Oo -
Libspec Liblist a oe
Void ,

Libproceduredec = Answerspec PROCEDURE Libprocedurehead-
ing; statement

Libproceduredec; Libproceduredec-
list

= Id/Digitlist
Id/Digitlist (Parameterspeclist)

Libprocedurespec = Answerspec PROCEDURE Libprocparamlist

Libprocparameter = Id/Digitlist .
, Id/Digitlist (Typelist)

Libprocparamlist = Libprocparameter
; Libprocparameter, Libprocparamlist

Library = LIBRARY Id Liblist Libproceduredeclist
Libspec = LIBRARY Libprocedurespec;

Macrobody = any sequence of characters in which string
quotes are matched

Macrocall = Macroname
Macroname (Macrostringlist)

Macrodefinition = DEFINE Macroname { Macrobody }+ ;
DEFINE Macroname (Idlist) # Macrobody }

Macrodeletion = DELETE Macroname ;
Macroname = Id
Macrostring =

{

any sequence of characters in which commas
are protected by round or square brackets
and in which such brackets are properly
matched and nested

Macrostring = Macrostring
Macrostring, Macrostringlist

Multoperator = * 7

/

Name = Id
Number = Real

Integer
Numberdec = Numbertype Idlist Presetlist
Numbertype = FLOATING

FIXED Scale

INTEGER

Octaldigit = 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7

Octallist = Octaldigit
Octaldigit Octallist

Overlaydec = OVERLAY Base WITH Datadec

Parameterspec = Specifier Idlist
Tablespec

Procedurespe2c

°
a

Ie
ee

Jd
 —

ee

Tr
..
.

L
a
g
!

Cs

-Refore nce
202

: Sacre ~ Spt peaennserpr Appendix ROYAL AMMA ART SSTADLISNMMENT PPpencix .

. _ Page 2

S200 CORAL COMPILER mY _
, "Ts sve" 3B/4

QI RAN s . ; —
USENS TAANUAL Author LS Grant

o
d

o
d

ro Parameterspeclist = Parameaterspec
- _ Parameterspec ; Parameterspeclist

= Id [index] -
“BITS {Totaibits, Bitposition] Typedprimary |

Partword

Partwordrefere ce = Ic Cindex]
nn ae -: BITS (Tctalbits, Bitposition]

Wordreference
Partwordtype = Elementscale

UNSIGNED Elerentscale
Placespec = LABEL Idlist

SWITCH Idlist

-Presetlist = + Constantlist

Void ’

Untypedprimary .
Typedprimary

Procedurecall = Id
Id (Actuallist)

Proceduredec = Answerspec PROCEDURE Procedu ireheading;
Statement

Procedureheading = Id -
Id (Parametersceclist)

Primary

Procedurespec = Answerspec PROCELURE Procparamlist
Procparameter = Id oo

oe Id (Typelist)
Procparamlist = Procparameter

Procparameter, FProcparamlist
Progran’ = PROGRAM Id Liblist Coron Segmentlist-

Real = Digitlist.Digitlist
- Digitlist-19 Signedinteser

Signedinteger
Digitlist. Digitlist 3
OCTAL (Octallist. Octa

ne dinteger

ae
)

tt

a

Scale = (Totalbits, Fractionbits}
Segment = SEGMENT Id Block
Segmentlist = Seqment.

Seginent; Segmentiist
Shiftoperator = LEFT

. RIGHT
Shiftword = Shiftword2 Shiftoperetor Typedprimary

Shiftword2 = Shiftword

Typecprimary .
Signedinteger = Integer

Addoperator Intecer
Simpleccdeinstruction = / Functicn, Address

Function, Address

Void

Simpleexpression = Term

4
TR cee Ene wm ee y

th ~toawtee Od: tak L

Addoperator Term

~
éy

(Cont!

Reference Appendix A

; “Version/Date 2 .
USERS MANUAL : . Author LL S Grant

Page 203 (Cont'd)

Type = Specifier

Simplestatement = Assignmentstatement

co Gotostatement
Procedurecall

Answerstatement
Codestatement

Compoundstatement
Block ,

- Dummystatement .

Sizelist = Dimension
; Dimension, Dimension

Specifier = VALUE Numbertype
LOCATION Numbertype

Numbertype ARRAY
BIT ARRAY
BYTE ARRAY

LABEL
SWITCH

Statement = Label : Statement
Simplestatement
Conditionalstatement
Forstatement.

Statementlist = Statement oo,
Statement ; Statementlist

String = 4#« sequence of characters >t
Subcondition = Subcondition AND Comparison

Comparison
Switch = Id
Switchdec = SWITCH Switch « Labellist.

Tabledec = TABLE Id [Width, Length]
‘{(Elementdeclist Blementpresetlist]

Presetlist

Tablespec = TABLE Id [Width, _Length][Elementdeclist]
Term = Factor

erm Multoperator Factor
Totalbits = Integer

TABLE
'Answerspec PROCEDURE

Typedprimary= Wordreference
Partword
LOCATION (Wordreference)
Numbertype (Expression)
Procedurecall
Integer

Typelist = Type
Type, Typelist

i om
ai
ae
d

3 y
a
e

eo

a
)

_d

Gat OVAL AIRCRAFT ESTABLISHMENT

@20C CORAL COMPILER
Version /Date

USERS MANUAL Author LS

Reference Appendix A
Page 2046205 (Cont'd)

Grant

[o
o

(

Unconditionalexpression = Simpleexpression
. String

Untypedprimary = Real
(Expression)

Upperbound = Signedinteger

Variable = Wordreference
’ Partwordreference
Width = Integer -
Wordposition = Signedinteger
Wordreference = Id

Id [Index]
Id {Index, Index]

{index]

al? ROVAL AIRCRAFT ESTASLISHMENT

9206 CORAL COMPILER
USERS MANUAL

Reference

Page 206

Version/Date 1.

Author 1

Appendix

Grant

ao
ww

~

APPENDIX C-

COMPILER OPERATION

aw

PROGRAM

CPTIONAL

{MACRO DEFINITION bh.

LIBRARY .

a DIAGNOSTIC
CORAL OPTIONAL > REPORT
SOURCE WITH S. MACRO
AROS “ an MAS PRE PROCESSOR “—__

MACRO FREE
CORAL SOURCE -

ae

DIAGNOSTIC PAS
SAA \ REPORT

(SYNTAX “ Ce
PASS IA ANB

: NA iS .
INTERMEDIATE LYS) : CODE

J COMPILER
. f TABLES.

DIAGNOSTIC
PASS 18 > : REPORT
(SEMANTIC Le

PASS 1B CHECKING)
INTER MECIATE ,
cope

COMPILER

Y TABLES
DIAGNOSTIC

PASS 2 REPORT
> OPTIONAL

(coDEe OBTECT
GENERATION) [MAR

RE LOCATA BLE

BINARY

ao DIAGNOSTIC

OTHER ~ % lowe. RIELOCATA BLE ” LOADER ca UTILISATION

(Sorionne NY
ABSOLUTE ~
BimAary °
D AP

EXECUTABLE

OBJECT

‘Reference Appendi:
= GA ROVAL AIRCHAET ESTABLISHMENT PP 1x D
= ‘ Page 207

8200 CORAL COMPILER: -
= USERS MANUAL Author L Grant

a
Pa 4

c APPENDIX D-

COMPILER INPUT/OUTPUT

COMPILER | INPUT OUTPUT
PROGRAM PERIPHERAL CORE PERIPHERAL CORE DIAGNOSTICS

MACRO CORAL source |. Macro-free Error and
- PASS with macros CORAL source Warning

Messages

, PASS Macro-free Pass 1A Pass 1A Error and
1A CORAL cource intermediate | compiler | Warning

: code tables Messages

7 PASS Pass 1A Pass 1A Pass 1B. Pass 1B Error and
-1B intermediate | compiler | intermediate | compiler | Warning

code -tables code tables Messages
fi
7 PASS 2 Pass 1B. Pass 1B Relocatable ‘| Error

intermediate | compiler | binary Messages

7 code tables Object Map
LL

Relocatable Absolute Program Error and
i binary binary in core j|Warning

LOADER Messages
Co

Core
[utilisation

information

..
~ Reference Appendix E

ROVAL BIBCRAPT
EGTABLIGH

MENT
208

;
Page

6200 CORAL COMPILER “_
Version/Date 1

Author
L Grant

USERS: MANUAL

f

- APPENDIX_E

EXAMPLE PROGRAM

The Program consists of three units of compilation
:

Two segments

one segment

two library procedures

is supplied for the

The following
information

compilation
 of each unit:

g user commands for each

Source
,

Teletype
log containin

“Pass
;

Object Map

The following
information

 is supplied for the Link

Loading of the units: .

peletype log containing
user commands for the

i

:

{

e Loader
|

Loader

core uti
rmation from th

Lisation
info

fi 7 ' Reference Aix | om

: GA ROYAL AINCRAFT ESTABLISHMENT Appendix E 7

.
: . . ; : Page: 209

3

3200 CONAL COMPILER. ; . :

7 82 LO: ieee _ Version/Date 1

[| USERS MANUAL ' Author L S Grant |
at

i. | io m

- UNIT 1 3 SOURCE 3

| ‘CORAL!
~

! 'PROGRAM' EXAMPLE CORAL PROGRAM 4

mm "COMMENT ' . ;

[| THIS PROGRAM HAS BEEN WRITTEN TO DEMONSTRATE THE 4

USE OF AND INFORMATION SUPPLIED BY THE 920C CORAL 3

_ COMPILER AND LOADER ; .

| - ™
{

“sad

['ETBRARY' 'PROCEDURE'
;

ADDTHEM / 2 (VALUE! INTEGER','LOCATION''INTEGER') , *

SUBTRACTTHEM / 4 ('VALUE' 'INTEGER', 'LOCATION''INTEGER') 7

| 7
- "COMMON! PLACE{

A

[| 'PROCEDURE' DIVIDETHEM (*VALUE''INTEGER' , “

7 : 'LOCATION' !INTEGER') ;

: 'LABEL' DEMON 2,DEMON 3 ; . ~

Z ‘INTEGER’ INT 7) i
:

} ~
“y

Lol
i

i.
~

| ‘SEGMENT! DEMON 1
~

"COMMENT! . ;

SEGMENT ONE CALLS A LIBRARY PROCEDURE ; ~

' 'BEGIN'
_

: ‘INTEGER' A ;
.

—

A:=6 +
ADDTHEM (A,INT) ;

'GoTO' DEMON 2 ;

'END' ;

"SEGMENT! DEMON 2

"COMMENT '
SEGMENT TWO DECLARES THE COMMON PROCEDURE

AND CALLS A LIBRARY PROCEDURE ;

'BEGIN'
+INTEGER' A ;

'PROCEDURE' DIVIDETHEM (‘'VALUE'' INTEGER’ B

'LOCATION' 'INTEGER' C) ;

«
i

C:=B/6 +

As=7 },. .

SUBTRACTTHEM (A,INT) ;

‘GOTO’ DEMON 3 ;

‘END! ;
toreret
FINISH

7 | Reference a
GAR ROYAL AIRCRAFT ESTASLICNMENT Appendix E

Page 210

Version/Date 1

Author L S Grant

920C CORAL COMPILER

USERS MANUAL

UNIT 2 : SOURCE

"CORAL!
‘PROGRAM! EXAMPLE CORAL PROGRAM

"COMMENT ! .,
THIS PROGRAM HAS BEEN WRITTEN TO DEMONSTRATE THE

USE OF AND THE INFORMATION SUPPLIED ‘BY THE 220C CORAL
COMPILER AND LOADER ;

"COMMON! PLACE (
"PROCEDURE! DIVIDETHEM ('VALUE''INTEGER',

‘LOCATION! 'INTECER') :
‘LABEL! DEMON 2, DEMON 3 ;
"INTEGER! INT ;) 3

'SEGMENT' DEMON 3
"COMMENT ' a

SEGMENT THREE USES THE COMMON PROCEDURE ;
"BEGIN!

'INTEGER!' A ;3

Az=6 ;

DIVIDETHEM (A,INT) ;

‘END! ;
'FINISH'

CAtr ROYAL APRCRAFT ESTABLISHMENT
Reference Appendix E

3

. Page 211
=) 500 CABAL CRI PIL ER id

e7GG CoRAL Ce3 wae LER Version /Date l

. USERS: MANUAL : Author L § Grant 4
| me
tog a

| | :
| 2

7 ™
{

. . . ad

UNIT 3 : SOURCE z -

Zl ~
L "CORAL!

]
‘LIBRARY! EXAMPLE CORAL PROGRAM

i oY

|| "COMMENT! , j
. THIS LIBRARY HAS BEEN WRITTEN TO DEMONSTRATE THE :

USE OF AND THE INFORMATION SUPPLIED BY THE 920C CORAL ~
COMPILER AND LOADER ;.

. ad

r , ; ~

| 'PROCEDURE' ADDTHEM / 2 ('VALUE''INTEGER! W ; |
"LOCATION! "INTEGER! X) ;

rc X:=Wt+3 ; “y
L. im)

™ .
i. ™PROCEDURE' SUBTRACTTHEM / 4 ('VALUE''INTEGER' Y ; 7
“o 'LOCATION''INTEGER! Z) ; i)
, Zs:=Y-3 ;3

["FINISH! 4 L
J

[| -
| | |
tio

Ll 4
dd

[.

[,

L
c

| a)

~]

:)
d

i \

|
\

j

Reference. Appendix -E
(G ‘YP RGVAL AIRCRAFT ESTABLISHMENT 212

Page

° Version/Date 1
1 USERS. RVANUAL Author L § Grant

™ UNIT 1 - COMPILATION LOG

_ _ *GO (Pass 1A)

: *GO (Pass 1B)

- *GO (Pass 2) 5

:
i

“|

MS UNIT 1 - OBJECT MAP
i
rl

il _ No object map requested

[
| i

.

[|
L

|

cy

i | ;

Reference Appendix E os . _ “ mi (A 12 ROVAL AINCHAET ESTABLISHMENT 4
| G \ os , . Page 213 :

_ S20C CORAL COMPILER Version/Date 1

: USERS. MANUAL Author LS Grant |

rm . 7

rm UNIT 2 ~ COMPILATION LOG ~ |

*OUT=TTY (Incorrect command - should have |
r *GO typed LST) . y

DEVICE SPECIFICATION ERROR (Output cannot go to TTY) F)

m *QUT=PTP (Reset output to PTP) ~
i: *LST=TTY (Object map request) Jj

—*CKS _ (Source checksum request)
m *GO (Pass lA) o-
7 RELOAD TAPE |

_ *GO (Pass 1A ~- repeat input of
| tape for checking)
| *GO (Pass 1B) .

*GO (Pass 2)

oo 5
i

: 1 L | UNIT 2 - OBJECT MAP \

c PROGRAM EXAMPLECORAL .
| }
— COMMON PLACE l

f D © 000000 DIVIDETHEM 7
he D 8 000010 INT © |

| SEGMENT DEMON 3. 7
Lou . 4

L 4 000004 DEMON 3 - A
D © 000000 A” . ;

~ d

Ls 7
J

(ANE Reference. Appendix §
Ri ROYAL AINCRAPT ESTABLISHMENT

$25C CORAL COMPILE! 7 } 2a CGUAL COAIPILER Version /Date 1

| USERS MANUAL Author % § Grant

— UNIT 3 (LIBRARY) - COMPILATION LOG

*LST=TTY . (Object map request) -
_ *GO (Pass 1A)

*GO (Pass 1B).

7 *GO (Pass 2 y

LIBRARY EXAMPLECORAL

LIBPROC ADDTHEM . {2-

LIBPROC SUBTRACTTHEM / 4

UNIT 3 (LIBRARY) - OBJECT MAP

mn) . Reference ix EF [\\2 ROYAL AINCHAPT ESTANLISHMENT Appendix
Z Page 215
bs 8200 CONAL COMPILER Version /Date 1
— USERS MAUAL Author L S Grant “
_ j

= “i

| LOADING INFORMATION °
oo . ia

. * DMP . (Absolute binary dump request)
*RAD=8 ~ (Radix=octal) “
*MOU=1600 _ (Object program to lie in module Oo] _

- . . ‘below location 1601) }
| | *M1U=+20000 d
Ls *COMMAND ERROR |

- *M1U=20000
[*GO (Load Unit 1) J

_ CORE BOUNDS 1052 1600 .20000 20000 ~
— .

{

PROGRAM. EXAMPLECOPAL 4
1547 1274 DIVIDETHEM .

mF . :

7 COMMON 1271 Af
~ DATA 1302
4 CODE 1531 -
| SWITCH. 1571
tj wot

SEGMENT DEMON 2 .
Py SEGMENT DEMON 1
Lj COMMON PLACE 4

UNDECLARED LIBRARY PROCEDURES
pr) | 4
L *GO (Load Unit 2) ad

PROGRAM EXAMPLECORAL
po

4 | COMMON 1271 yo
DATA 1321 .
CODE 1512 .

. SWITCH 1526 | |

SEGMENT DEMON 3
i. COMMON PLACE]

/ UNDECLARED LIBRARY PROCEDURES —_
if : -

iz *GO oO . (Load Unit 3) |
~ LIBRARY EXAMPLECORAL

LIBPROC SUBTRACTTHEM .
: 1503 “1316 SUBTRACTTHEM i = !
- COMMON 1271
7 DATA 1323 }
= COBE 1502 }

SWITCH 1512 | .

kiddo). ,

AW ROYAL AIRCRAFT ESTABLISHMENT
Reference Appendix E

>

*

- . Page 216 & 247
an S20 CORAL COMPILER: ‘an /! Babe IAL CGRIPILER Version/Date 1.

| USERS: MANUAL Author L$ crant

: ' LOADING INFORMATION

(Cont'd) .

LIBPROC ADDTHEM
Z 1473 1310 ADDTHEM

COMMON 1271
DATA 1323

- CODE 1472
SWITCH .1502

*END
*GO.

PROGRAM ENTRY 1571

L.

(

L

Reference a »
el

ad
rt

4
:

WF

=
5

"
09

adéy
*¢

‘
Q

*
Tana

edég
*

a
i

'
Cana

8

a
.

|
‘
a
d
e

©
A

AxceIqtyY
y
o
r
e

A
fos

OZ
Gey

yeadey
+1

9
8

o

4

o
s

3
‘aden

a
>

w
e
a
b
o
u
d

y
o
r
e

to
O
F

SBF
yeoeday

*9
Ve

.
we

O
~

ig
.

‘
e
d
e

‘
a
d
e
y

Fs
f

;
U
O
T
I
E
N
U
T
B
U
O
D
S

U
O
F
R
e
N
U
T
A
U
C
S

5
2p

-

 squ
smove

y
o
e
s

207F
y
o
e
s

AoOx
te

ca
C
o
p

a
d
A
y

*¢
dit

S
Q
V

,
yee

y
F
e
o
d
o
y

*s
PRE

B
e
o
d
a
y

-
s
o

B
Foals.

Insey
|

B
u

oO)
ot

‘Tepeex
7

Tie.
CHER

<!
a
e

w
ut

e
d
e

a
t
u

“Pp
:

foo.
o
d
a

‘Pp
-

7
OD

e
d
A
y

+

a
e

S|
&

*
s
u
o
t
a
d
o

-
*
Z
e
p
e
e
l

uy
ZOpeRar

ut
o
t

fa
Ee

s
d
A
y

*¢
*

€05
addy,

*¢
.
0
D

edaAy
‘¢|

e
d
e
q

sosznog
“¢

a
d
v
a

aoamne?
«

,
ey

-
3

:
e
S

Auf
By

<4
why

"%
‘

:
=

G
O
R

al
©

.OT,-
:

oo.
t

=
3

&
”

960%
Zepesxl

ut
-

Zapesez
ut

*
s
u
o
t
i
d
o

“
S
U
O
T
I
C
2

o
g

8
oO

03
2
z
e
b
6
t
a
z

*
z
j
e
d
e
q

qt
s
s
e
q

°-zledeq3
wt

s
s
e
g

“*z
edéAy

*z
adét,

*
i

Pe
Pen

ee
os}

o
O

te
"
e
a
e

‘
o
d
e
x

~
 9-9de.

.
"
3
d
r
 3

=
=

"
e
c
e
s

A
Z
e
u
T
q

A
Z
B
U
T
A

A
Z
e
u
U
T
q

gT
A
z
e
u
U
T
d

WT
A
z
e
u
t
q

s
s
e
y

°
ra

X
S
P
e
c
T

p
e
o
y

*tT}
Zz

s
s
e
g

p
e
o
y

tT
S
S
W
q

PpeOyT
“Ti

>
s
s
e
g

p
e
o
t

°T
O
T
O
B
W

peotT
W

-

a
T
a
y
O
T

.
€

S
s
o
v
d

a
l

s
s
v
d

a
l

S
s
v
d

S
S
V
d

Gd
w
w

L
o
s

4

=a tI

T
l
f
.

[
i

i
—

-
“

a
wad

|
J

}
|

|

|

~
~
]

c
o
s

blo

roa
{
i
i |
i |
Lo

,

a
e

—
_
—

TAA ye
fase De) .LOADIR, Binary

ae
s

Hode NN

wr
y

BATA BD LOADER, Binery Mod AN

a sy ¢ ae gry eye eye ‘
WA AC ag anit uy 4 AMIL The
WATTLE ta Boo dea i “AU Ghabs

a ae oy ar BPG Eve gory <7 A om sy OF 4 ? i a § i 223g phe 2
[er a erw) ae ivi edb bad |

Author

aD - Reference P-OPD-1166
Contents

Varsion/Date 1/29.4.75

J G Slee

fob

fel

al
w
h
e

iS)
ise

)
~ CONTENTS

INTRODUCTION

. CORAL LANGUAGE

UNITS OF COMPILATION
OBJECT CCDE LIMITS ON COMPILATION UNIT SIZES
RUNTIME FACILITIES
1.3.1 Multi-level programs

°1.3.2 Program sumcheck
~1.3.3 Data Area Initialisation

LOADER DESCRIPTION
OPTIONS
2.2.1 Initialisation Options
2.2.2 Load-time Instructions
ORDER OF LOADING

2.3.1 Single level program
2.3.2 Multi-level procram
LIBRARY PROCEDURE LOADING
INTERFACE WITH THE USER
2.5.1 Command language
42.9.2 Cannand format
COMMON CHECKING

OPERATING INSTRUCTIONS
DETATLED OPERATING INSTRUCTIONS
OCOLRIANDS

3.2.1 Initialisation Commands
3.2.2. Load-time commands
OBJECT PROGRAM
PAPER TAPE CUTPUT SEPARATION

DIAGNOSTIC OUTPUT

LOADER DIAGNOSTIC OUTPUT
- 4.1.1 Fatal Error Messages

4.1.2 Non-Fatal Error Messages .
4.1.3 Leader Software Error Messages
CORE UTILISATION INFORMATION

rh oT RE APA PLEGES AYIA | eference P-OPD~1
GAR NMiARGUL ELLIOT i BMAGRGS Reference 166 {

i aioe Page Contents ! i NAN EY TEMINSS PANT aa 4
vu4UuU CALSMNULU LUAU CN Version /Date 1/29.4.75

M7 Author ~ J G Slee

- .
7 5 LOADER. STRATEGY ;

5.1 OBJECT M/C STORAGE ALLOCATION .
i - 5.1.1 Description :

- 6.1.2 Loader Generated Information 4
5.2 DATA SPACE ALLOCATICN .

7 5.2.1 Data Areas ~y
- 5.2.2 Allocation Strategy i
- 5.3 CODE SPACE ALLOCATION i
mo 5.3.1 Code Areas :
Ij 9.3.2 Allocation Strategy !

5.4 LOADER GENERATED CODE & DATA 4
; 5.4.1 Fixed Data Area
: 5.4.2 Procedure Call Secuences x

5.4.3 Label and Switch Sequences
. 5.4.4 Program Entry Sequence .

[7] | . Appendix A Table of User Manual Sections amended or amplified by H
oS this Document -
cc Appendix B Object Machine Core Usage Diagram ;
Zz Appendix C Example of Core Map i
‘ Appendix D Mininum Operating Instructions

m :
Ls j

. | oy “y LJ |

[2
Li |

d

[i
| | Ld . |

|
U |

, 4

|
Lo

L
J
 Fs) Ly aa gh@ Pp Bg omy oye eye 5. ARCOM ELLIOTT AY Re

bebe: Gaels oud fabebad Py
CRED . Reference P-OPD-1166

Page 1

Version/Date 4 /29.4.75

Author J G Slee

INTRODUCTION

This document is for use in conjunction with the CAP Royal
- Aircraft Establishment 920C CORAL COMPILER Users Manual

to describe the use of the Extended Loader, and it. is
assumed that the user is familar with that document. All
section numbering is followed by a reference to the equivalent
section in that Manual. Any other references to the User
Manual are prefixed ULM. .

‘The minimm configuration for producing a loadable CORAL 66
program compiled by the CORAL compiler is an Elliott 920B (903)
with SX of core store, a paper tape reader, a paper tape punch and a
teletype. The program may then be run on an object machine with up
to 128K of core store, as specified at load time.

The following description summarises the contents of each
chapter:

Chapter 1: A description of the ways in which the Extended
loader affects the usage of the CORAL language.

Chapter:2 : A description of the purpose of the Loader, with
a description of the use of the various options
and comrands available. .An explanation of the order
of loading units of compilation. A description of the
general method of interface with the user.

Chapter 3: A detailed description of the operating instructions
for using the Extended Loader. A description of ail
options available to the user. Operating instructions
for use with the Object Program.

Chapter 4 : A list, with reasons, of all possible Loader error
messages. A description of the core map produced

by the Loader.

Chapter 5: A description of the way in which the Extended Loader
> ’ locates and produces the object program in Absolute

Binary form.

R ference P-OPD-1166 -

. Page| 2

rn lorsion /Date 1/29.4.75

= Author J G Slee

JON LVTRUMEN | rye Q : UPS, PAAR
odes EA EGER RAPALA:

roy

a
n
)

L
o

| i

1.1¢1.1.1)

1.2 (1.1.1.4)

. Which may be compiled and loaded by the Extended Loader.

RAL LANGUAGE

The implanentation of the CORAL syntax is as described .
inthe 920C CORAL compiler User's Manual. The following
sections serve to amplify and supplement the features
relevant to the Extended Loader.

UNITS OF COMPILATION

As indicated, there are four types of units of compilation

These are: a single program segment

a set of program seements
a Common sesnent
a set of Library procedures

It should be enphasised that a Common sgement unit of
compilation may only be loaded as a separate unit and not at
the same time as other types of units of compilation which
will py definition contain the common segment.

OBJECT CODE LIMITS ON COMPILATION UNIT SIZES

Due ta the object code strategy of absolute addressing
of data, the following limits exist:

(1) The data area generated by 1 CORAL compilation unit
must be < 8K,

(2) The executable code generated by 1 CORAL compilation
unit must be < 8K.

(3) The data area generated by 1 CORAL program whether
compiled as a whole or in separate units must be
< 8K, since it must lie within module 0. However
core locations outside module O may be accessed as data
via indexed variables or anonymous references with
large indices.

(4) The executable code generated by 1 CORAL program must
be <s 128K and therefore if > 8K must be canpiled

~in ‘sections to adhere to. (2).

(5) The data area and executable code generated by 1
CORAL program must be < 128K although any core locatioris
above 128K may be accessed via indexed variables with .
large indices.

full description of the runtime storage and object code
strategy is provided in Chapter 5.

. :
a a

B saben yr ry . va
> mf i Reference P-OPD-1166

. ont Page 3
- BEN LV TOM oo bo fae UL BAGEL Version/Date 16/2/76

i
Author Various ;

. ri

a

1.3(1.2.3) RUNTIME FACILITIES

1.38.1(1.2.3,1) Multi-level programs

The interrupt handling housekeeping code is not generated
by the Extended Loader, the responsibility for writing and
including this is with the CORAL programmer.

The operating instructions for loading and executing a
multi-level program are provided in section 3.1.

A CORAL program may be split into segnents which run on
different levels, a minimum of one segment per level, and
all levels must be present. As for a normal program the
same Common ccnmunicator must accompany each unit of
compilation and is therefore shared between levels. The level
upon which segments reside is determined by the input of the
relevant Loader option before loading those segments.

CORAL code, i.e. Common procedures, should not be shared
between levels since 900 code is not reentrant, and it is
the responsibility of the user to ensure that this does
not happen ~ no.checks are performed by the Loader.
Similarly, care must be taken in updating Common data
which is shared between levels.

The user need not maintain four copies of Library procedures,
one for each level. The same Library tape may be loaded at
each level; the loader treats the Library procedures as
different on each level.

1.3.2(1.2.3.2) Program sumcheck

The Extended Loader calculates the runtime sumcheck: of the
executable code of a CORAL program and prints it out in
octal at the end of loading.

The sumcheck is the sum of the contents of all locations
included in the program's Unit Code Pounds including the entry
sequence (ignoring overflow). None of the data areas are includ
ed since data, unlike code, may be variable.

1.3.3(1.2.3.3) Data Area Initialisation

Note that the Loader does not include any clear-store
facility. It is up to the user to ensure that any areas
requiring initial values are either preset or are explicitly

Oo av
a

aN he stact of the user's program, Remember
only set when the vre: first losdasde:

Boat enad M2522‘

4s,
S
e
n
e
r

3
Bee

eee
s

et
e

an
ne

Reference p_opp-1166
Page A

Version/Date 16/2/67

Author _. Various

|

|

—
]

—

[

(.

2(2.1.5)

2.1(2.1.5) |

2.2(2.1.5.2)

2.2.1

LOADER DESCRIPTION

DESCRIPTION _

The Extended Loader links together independently compiled
CORAL units of a program into an executable program, producing
the latter in the form of a sumchecked binary tape (or
tapes).

It is purpose built and therefore does not allow CORAL units
of compilation to be linked with any other program unit
produced via another compiler or assembler.

The Loader accepts relocatable ‘binary fron Pass 2 of the
CORAL compiler. a

Note that the relocatable binary tapes produced by the compiler
must be input to the Loader backwards, i.e. the character
produced last by the Canpiler must be input first to the
Loader.

‘As well as producing the absolute binary of the program, a
utilisation of core map is produced on the teletype (unless
suppressed by the user.), see 4.2.

During loading, detection of an error which is not
considered disastrous does not inhibit the loading process and
execution of the object program is at the user's discretion.
However, an irrecoverable error will cause the loader to

halt. The Loader may be re-entered to recommence’ the loading
process, without reloading into core.

It should be noted-that an incomplete program, i.e. a subset
of the units of compialtion comprising the-whole program,
may be loaded and executed similarly at the user's discretion.

OPTIONS

The following options are provided by the Loader using the

standard Extended Loader user interface, see 2.5.

Initialisetion Ootions

The options included in this section are all concerned
with initialisation. They cannot be used once a load-
Time option has been input.

a
)
 (At REAR OAL EPL iney RUPTURE AS Reference P-CPD--1166 4 fy: y ag TA % ce van a oe He) MARLOND ELLIOTT Aviuy : pias “ie TerTLere

Page 5

Version/Date 16/2/76

Author Yeriorz

Taree’ PRE

Ud isis CAE

co

2.2.1.1

2.2.1.2

2.2.1.3

B.2.1.4

D.2.1.5

ing progran (AUT)

The user can specify that he requires his object program
to be self-triggering, on being read into core.

Thé default is that this is not required.

Object Machine Core Size (COR)

The minimum number of modules in the object machine can be set
using this cption. Note that even if the actual core is not
present in the object machine the value input should be the
module number of the highest module to be used, plus one.

This option also prints out the object machine configuration.

The default is that the object machine consists of not less
than 4 modules i.e. modules O-3.

Core Utilisation Map Suppression (MAP)

The Extended Loader normally provides information on the
object program's utilisation of core, as units of ccrnpilation
are loaded. However, there is an option to suppress this
information. All error and warning messages are still
printed on the. teletype along with the entry point, level
and checksum information. Input is still via the teletype.

Module Bounds (MUB, MLB)

The upper and lower pounds of any module may be changed to
fit any object machine constraints.

'The defaults for each module are the normal extremities of a

module, namely 8191 and 0 respectively, except for module 0
where the lower bound is 8, and the upper 8166.

Radix of Input/Output (RAD)

“The - ‘radix of the numbers input by the user on the teletype _
during the specification of options, and those output
on the teletype by the Loader i.e. core map, entry point
may be either octal or decimal. The exceptions are error
numbers which are always decimal, and the code checksum
which is always octal.

The default is decimal.

Ne
e

[
w
e
r
e
n
t

Reference P-OPD--1166

Page 6
a . -

i _ Version /Date 1/29,4.75

Author 3 G Slee

| ELLIOTT AVIONICS i\ ia AARON
Ben bien ae

CQ PEP RLY FANE zy
“ BORG eran pn gad aa
efit CAP CILELS

2.2.1.6 Tape size (TAP)

The object program can be output on more than one tape if

the user does not want a tape to be unwieldy. He can do this

by specifying the maximum number of words to be output on

any one tape. Fach tape is preceded by a tape number in

i

e
e
l

[
e
n

bod,
Lu

2.2.2

b.2.2.3

2.2.2.2

2.2.2.3

_legible tape code, which must not be read. The object program

tapes are checked to ensure loading of the tapes is in

sequerice and that. each tape is read correctly.

The default is a maximum size of 16384 (decimal) words .

Load-Time Instructions a

. After all.the required initialisation options have been

input, the following may be input before loading an RL8 tape.

Unit of Compilation Code address (ADD)

The user may select the object machine base address of the code

in a unit of compilation. He otherwise may choose the

module in which it is to be located. Previously loaded code

can not be overwritten.

The default is to place the unit's code in the locations

chosen by the Optimum Location of Units of Canpilation

Algorithm, see 5.3.2. ;

End of Loading (END)

Termination of the loading sequence, incorporating the

resolving of procedure references, must be terminated by

the user.

The default is to continue accepting more units of

conpilation. :

; Entry ‘address (ENT)

The object program's entry point is the first statement in

the first (last) segment compiled (loaded) in a specified

unit of canpilation. .

The default entry point is the first statement in the first

segment compiled in the first unit of compilation loaded.

o
d

Page 7

Version /Date 16/2/76

Author Wg:

Reference P-OPD-1166 .

bn
 n

we
rn
nr
d

a
y

2.2.2.4

2.2.2.5

2.2.1.6

2.2.2.6

2.3(2.1.5.3)

Process Relocatable Binary Tape (GO)

On receipt of this command the Extended Loader reads and
processes the next unit. .

' Program level (LEV)

The precise operating instructions for loading multi-level
programs are given in 3.1. The loader runs in either

. Single-level mode or multi-level mode.

The default for the level of a unit of compilation when
loaded normally is level 1 and therefore a single level
program will always run on level 1.

Relocatable binary version (RLB)

The Extended Loader can accept relocatable binary tapes from
current ox obsolete versions of the Compiler,
The version can be specified by the user.

The default is automatic recognition by the Loader.

Undeclared procedures list CUND)

If, after processing a unit of compilation, there are still
references to undeclared procedures a message warns that there

are undeclared Library and/or Common procedures. The user
may request a list of these.

ORDER OF LOADING

2.3.1(2.1.5.3.1) Single level program

The relocatable binary paper tapes for the units of
compilation may be loaded in any order excluding the
library tape(s) which must be loaded last.

The entry point of the program is assumed to be the first
statement of the first segment compiied | unless changed by

_ the user, see 2.2.2.3.

e.g. segment tape 1
segment tape 2

segment tape
Library tape
Library tape N

r
 e

m

: Library tape M

L
a
n
n
e
a

[w
ae
ne
ne
’]

M
e
e

ed

all

2 are . gt £% . 7 a MARCO ELLIGTT AVIGNEGS Reference P-CPD.-1166 MARGE ELLIUE) AY EUsrce
, Pege 8

SRP PPR STO OE 8 Pm ro ney § FAA PA re ey
wh OFS to Ragtae Ga7he gas oes -
uh BAP SMIU Cu LUeALcrt ersion/Date y 1/29.4.75

Author IG Slee

a

oe
)

d

a

c
o
o

s-
nr
mo
ny

i

L
o
.

c
c

|
o
r

2.3.2(2.1.5 .3.2) Multi-level program

The relocatable binary paper tapes for the units of
compilation of a multi-level program must be loaded

_ together for each level but may bé in any order within the level
followed by the library tape(s) for that level. (The levels
may also be loaded in any order). The same library tape(s)
may be read for each level and the Loader will create a copy
of each relevant procedure per level upon which it is used.
The entry point of a level is assumed to be the first
statement of the first unit loaded on that level, except
in the case when the ENTry option is used. In this case,
the entry point for that level will be the entry point of
the program.

e.g. segment tape 1, level 1

seement tape Nl, level 1
Library tape 1
Library tape M

segment tape 1, level 2

segment tape N2, level 2
library tape 1

library tape M

“segment tape 1, level 3°

a

a

segment tape N3, level 3
library tape 1

w
o
o
s

library tape M

segment tape 1, level 4

segment tare N4, level 4
Library tape 1

library tape M

—_
Il

_

met “Reference p_onpp-1166
ba be bal Lf g : ”

, Pace 9
AIO Mores PANT er
Zu GALE LUAU _ Version/Date 4 729 .4.75-

Author JIG Slee

*The concept of hardware levels can also be carried across

to software levels. More than one set of units of compilation
and library tape(s) can be loaded on one hardware level, so
that more than one copy of a library procedure imy be. generated
on that hardware level. Before each independent set is loaded
the LEVel option must be used to specify that the following
set is to be loaded on the same level. As specified above
the level entry point is either the-default (the first statement
of the first segment comiled in this set) or the first
statement of the first segment in the unit of compilation
specified by the ENTry option; but note that in both cases
the hardware level entry point output in the Fixed Data area,
and therefore that hardware level entry point when the program
is run, is the entry point of the last set (of units + library)
loaded on the hardware level.

As an example, if more than one set of units + library are to
be loaded cn hardware level 4, the following would be added
to the above loading sequence

“segment tape 1, level 4(2)
“
’

»

segment tape S2, level 4(2)
Library tape 1 .

Library tape M

e

e

segment tape 1, level 4(x)
¢
a
e

segment tape Sx, level 4(x)
Library tape 1 -

Library tape M

ca
ll

d
l

AAR PION ETE beyepene ALPE REL Gs Reference ~
Wiearibuiad cebigi >) AVILA GS P--OPD-1168

Pace ic
MOM PVTERINEm Pare ~
wid Laie GAL CPi ou Lt AAUEA Version/Date 16/2/76

Author Various

_
L
e

ee

i

m
y

be
e
d

wid

2.4 (2.1.5.4) LIBRARY PROCEDURE LOADING

2.0(2.4)

As described in 2.3, the Library tape(s) are loaded after
all units of compilation for the current level. The
Extended Loader performs a scan of each Library tape and
loads only those procedures which have been referenced
previously, i.e. having the same Library procedure number.
Any number of Library tapes may be scanned until all
referenced are satisfied. The Loader outputs a description
of the Library procedures loaded, see 4.2.

The following points should be noted:

1) The loader performs no check on duplicate Library numbers
and simply loads the first. procedure encountered with the
required number (i.e. last conpiled if both are within.
the same unit) - all subsequent procedures with the same
number being ignored. This therefore allows the user to
redefine Library procedures on that level.

2) Since camunication with a Library procedure is via the
Library procedure number and not the name, reference to
different procedure names which have the same number
will cause calls to the same procedure at run time.

3) The Library tape supplied with the 920C CORAL Compiling
System, CAPQF, contains the Compiler Floating Point
Library Procedure which has the Library Procedure
Number 1. The user should therefore avoid the use of
this number since redefinition of this procedure would

no doubt have disasterous consequences.

4) Library procedures which have not previously been
references are simply ignored - they are not loaded.
The user should therefore ensure that any Library
procedure called only by another, Library procedures
is loaded after (i.e. canmpiled before) the Library
procedure(s) calling it. This will save multiple
reading of any one library tape.

-INTERFACE WITH THE USER

Command Language

Communication between the operator and the Extended Loader
-for selection of loading options is by means of commands
typed in at the teletype in response to 3n invitation to
type fron the Loader.

GA
e

REA MOONE SLE EcyRS PE REELS ~ Reference P-OPD-1166 WEA UII ELLIO | r A ierriere, ;
_ , rage ii

cont | ersion /Da tin AS Version/Date 1/29.4

Author J G Slee

095

3
e
m
s

2.5.2(2.4.2)

Commands are split into two types. of command:
Intialisation and Load-time, see 2.2. Once one load—time
command has been typed in, no more initialisation camnands
are accepted.

If an Initialisation command is typed with incorrect
parameters it can be reinput with the correct parameters.

Command Format

The invitation to type a command issued by. the Loader is an
* at the start of a new line.

A command string is of the format

, ~ COMMAND er ,

or COMMAND = parameterstring cr

where parameterstring is defined as

PARAM
or PARAM], PARAM2

Only the first three characters of the COMMAND are used
(except for the GO camand, where only two are used), the
COMMAND being terminated by either = if parameters are to
be used, or cr otherwise.

The parameter(s) PARAM] and PARAM2 are either alphabetic or
numeric. In the case of alphabetic parameters the last three
(or two in the NO case) characters of each parameter are the

’ ones accepted (or rejected if invalid). In the numeric
parameter case there must be between 1 and 6 numeric
characters in any valid parameter.

A parameter is terminated by a (,) -if there isa second
parameter to follow or cr otherwise.

A description of all the commands and their associated
_ parameters is provided in chapter 3.

‘To remove a character fran the input buffer if it has been
incorrectly typed, a«may be typed; ne« characters will remove
n characters, if typed before the cr.

A«may be output by the Loader if the character just received
was of invalid parity. The character will be removed from the
input buffer.

A linefeed typed before the er deletes the whole of the
‘cammand being input, and an invitation to type a fresh command
string is given.

_ Ali spaces are ignored.

‘e
an
oe
ne
ed

Fa
it
 m
t

8
‘

Ra
mi

n
d
e
s
e

—

Page 42

| Author J G Slee

i} 2.6(2.5.1) CCMMON CHECKING

The following checks are performed by the Loader on the

| Common communicator and its associated segment(s) for the

units of canpilation of a program: .

m4
1) The size of the runtime Comnon area is the same for all

units of compilation.

[| | 2) A Common label is only declared once.

re 3) A Common switch is only declared once.

b
e

i

4) A Common procedure is only declared once and all are

declared. :

There are no other checks performed on Common and it is

the responsibility of the user to ensure that the same

Common communicator is used with each unit of compilation

of a CORAL program and that Common procedures are not

shared between interrupt levels. It must be noted that the

Loader only loads the first Common area it encounters ~ all

other Carmons are simply checked as described above.
.

SOPT AVIGNICS Reference p_opp-1166

Version/Daie 1/29.4.75 -

_]

GAP “y OT}.

COA CLULOTT AGMICS Reference P-OPD-1166
MRCOMD ELLIOTT Avani.

. Page 13

90P CVTOMMEN LMAMED a
ZU BALSNDEes LOAUEY Version/Date 46/2/76

, me Author Various

“Q
a

d
M

_
d

}
C
c

a

e
l

[
[

-

L
o
s

—
—

a

L
a

(

[

3 OPERATING INSTRUCTIONS

3.1(3.1.5

1)

2)

1) DETAILED OPERATING INSTRUCTIONS

Load the Extended Loader binary paper tape using the

hardware initial instructions.

If the Extended Loader is to be wm in an 8€ machine

OR the m achine is a 903, 920B or 920M, use the tape:
* CORAL BK z BXTENDEAD “LOADER, Binery Fode 3",

If the Extended Loader is to be run in a 216K machine

AND the machine is 2 208 3 or 9206 5 use the tape:
3a rAL wauery lode 3".

The only sisnifiecant difference between these two

versions of the Extended Loader is the amount. of
dictionary space available inside them:-~

3056 wor ds in the @€K version,
6491 words in the 16% version.

Apart from this, the choice of version has no
Girect relationship with the size of the run-time

macnine: either loader can theoretically handle

728K programs, and programs for any of the above
900-Series machines.

Trigger to 8 using the hand-keys.

—_
]

a

.

Page 14

Vers ion/Date 4 6/277 iA

° Author Yarious

J
—

a
d

i

n
n

(_

3).

4)

5)

Type the required Initialisation’ ‘cbmmands on the teletype;
see 3.2.1.
An * will be Praaced on the teletype as an invitation to
type each of these

Place a relocatable binary paper tape of the program in the
paper tape reader The end of the RIB tape
last output by Pass 2 of tne compiler should be read first
by the Loader.

Type any y recquired Load-time options on the teletype, see
section 3.2.2
ENTry if this is the unit whose first executable

instruction is to be the program (last time)
or level entry point.

LEVel before the first unit is loaded on this level.
When the second and subsequent LEVel camands
are used, a new absolute binary tape is begun. The
multi-level and single-level options are mutually
exclusive.

ADDress If the unit to be laoded is to be located by the
user; see 5.3.2 for details of the use of this
option. ;

-6}) Type the GO command, whereupon the RLB tape will be read
in and processed. At the same time the absolute binary
tape containing the object program will be produced and
the core map details printed on the teletype (unless
Suppressed at step (3) by the MAP option).

' 7) On completion of the unit's processing the message(s)
UNDECLARED COMVON PROCEDURES
UNDECLARED LIBRARY PROCEDURES

will be output on the teletyre where appropriate followed
by an invitation to type. The onerator may use the
‘UNDeclared option to obtain a list of these undeclared
procedures,

8) Repeat steps (4) - (7) for each relocatable binary tape
of the program to be loaded. Do not forget to keep to
the correct loading order, especially in the case of —
multi-level programs; see 2.3 and 2.4.

9) When ail program tapes have been Icaded and all library
_ procedure calls are satisfied on the final level
type the END ‘command. .

The absolute binary tape(s) for the loadable object
program will be completed and the entry point, entry level
and code checksum will be output to the teletype.

10) The sequence 2-9 may be repeated for another program
without reloodine the Ext S nded Loader,

be
an

ap
ta

nd

pemmeeon

a
o

_]

a

- Page is

: 5) RSARPOAL ELLINTT ainwice — Raference P-OPD-1166 BAY =) MARCO’ ELUIGTT AVWUauaGS 1, 3 4

ee x ’ ‘

7 Para _ Version /Date 1 /29.4.75

Author J CG Slee

ad
.

2
n
e

J
a

i
Le

a

p
a
y

r
e

a
n

L
o
w

OCMMANDS 3.2(3.1.5,2)

For command language format see section 2.5.2.

3.2.1 Initialisation Commands

OGiGiAND) PARAMETERS | DEFAULT MEANING

AUT YES , Object program tape to
. i be self-triggering.

NO __NO i
i

COR —[m] m4 ‘No. of core modules in
lsms16 / Object machine (i.e,

; Maximum module number + 1).
| This renains unchanged if

| the parameter is onitted.
; The new object machine
‘ configuration is printed;
: see 4.2,

MAP ' Object program core map
YES YES fis sred
NO o itis not| Pena re

MLB m,n “n=O ' The object machine module
Osmsmax modulg¢ except for! m has an inclusive lower
Osns8191 m0 where bound of n. -

n=8
n=8192 Module m has no core

{ available,

MUB m,n n=8191 The object machine module
“ O<msmax moduléexcept for |m has an inclusive uppe

: Osns8191. * m=O wherg bound of n. /
, N=8166

=8192 | , Module m has no core
available.

RAD . User interface number radix
- OT ~ Octal
DEC - DEC - Decimal

TAPe W W=16384, 4 Maximum number of
object code words to be
output on any one
absolute binary tape.

A
m
e
n

i

T
T

fI-4 i) @ NY ” . PEETENCE D_CPN..L1GG

16 ~
~
 Page

“4 a

Pa
d

i§ farsion /

Author

mute 46/2/75

> Various

_d |
|

|

3.2.2 Load—time carmmands

COMMAND PARAMETERS DEFAULT MEANING

ADDress m,n

Osnsinax module

0snS8191

Unit of compilation
location decided by

loader (see 5.3.2)

's The start of the
unit of conpilation's
object code tea cote
loader generated code, se
pection 5.3.2.
m=nodule number’

fn=module relative addres

YES
NO NO

All RLB tapes

have been loaded ave not

—

ENTRY none Entry point is

first executable

word in first unit
loaded,

Entry point is first
executable word in the
unit loaded after the
next GO command. —

none none Start processing
RLB tape in reader.

LEVel

=0

1=1,2,3 or 4

Level at which follow-
ing units are to be
loaded.

For a single-level
program the LEVel
command may be used a
maximum of once (1=0)
For a multi-level
program a LEVel command
with the appropriate
parameter must be typed
before loading the
units for that level.

RLB

nition

autovatic recog~] RUB format. version, ’

use "3" for current
iesus of Compiler

UND none none

—

Print out a list of un-
defined procedure names
which have been refer-—
enced,

6

e
a

J

Reference P-OPD-1166

rage 17

| Version/Date 1/29.4,75

Author J G Slee

3.3(3.1.6)

3.4(3.3.1)

OBJECT PROGRAM

After loading using the 920C Extended Leader, the object
program is on the absolute binary tape(s) produced. It is
not in core,

To execute the absolute binary object program:

1) Icad the first absolute binary tape in the object
machines reader, ensuring the legible tape number will
not be read, and load using the hardware initial
instructions.

2) Repeat step 1 for each absolute binary tape produced,
‘loading in strict numerical order, until all have been
loaded,

3) If the AUT=YES command was used, execution of the object
program occurs wnen the last absolute binary tape has been

' loaded. :
Otherwise, trigger to the entry point provided, using the
hand--keys.

PAPER TAPE OUTPUT SEPARATION

If the paper tape punch runs out during the loading process
the user has no choice but to reload the paper tape punch, °
retrigger the Loader, and start loading the program again,
fron the beginning. He may not runcut blanks during the
loading sequence. It would be advisable therefore to ensure
that there is enough tape in the punch before starting the

- loading of a program.

In the case of a multi~level program, the Loader starts a new
tape for each level loaded. There will be at least 4 tapes,
therefore, for a multi-level program.

' When a tape has been split by the Loader into more than one
absolute binary tape, the user may subsequently physically
divide the tapes between the end of the "tail" of one section
and before the beginning of the "head" of the next. It is
Suggested that the best place to split the tape is just before
the legible tape number, in order to execute the loading into
the object machine in the correct sequence.

It should be emphasised that tapes must be loaded in STRICT

NUMERICAL SEQUENCE, since each new tape (excluding the first)

checks that the checksum of the previous tape is the same as

the checksum stored on the front of the current tape.

Loe

Reference P-OPD-1166 .

Page 18

Version /Date 1/29.4.75

Author J G Slee

—
—
—

4 DIAGNOSTIC OUTPUT

4.1(4.1.5) LOADER DIAGNOSTIC OUTPUT

The format of error messages printed on the teletype by the
Ioader is:

- ">> nnn [message]

where nnn is a three digit error number

The error number is followed by a message except in the case
of Loader software errors (see 4.1.3).

4.1.1 ’ Fatal error messages

Number Mossare Moaning Result

100 ACM/EPT Too much use is being made loading Halts
OVERFLOW of the ADDress option, resulting

in the Loaders available Core Map
having too many entries due to the}.
fragmentation of core.

OR: The number of External
Procedures called on this
level is too high,see P-SYD-1166
section 5.

101 INVALID Tape read is not a valid RLB Ioading Halts
TAPE tape, or has been misread.

102 PARITY Character on RLB tape is loading Halts
FATLURE invalid OR User is attempting

to load Version 2/3 RLB when
Version 1 type is expected.

103 CHECKSUM Checksum failure on input of Loading Halts
FAILURE RLB tape

104 PRL/TCL Too many external procedure Loading Halts
‘ OVERFLOW references on this level; OR

excessive use of the ADDress
option, therefore not using ‘
the Optimum Location of Units
of Compilation Algorithm,see 5.3.2

resulting in too many inter-
module conmunication code
blocks, see 5.3 and 5.4.2.

CORF -y {This is an object program code . ;
105 CODE eULL- overflow. An attempt is being e loading Halts

made to reserve code for this
unit of compilation: no free
area large enough can be found
A different loading order or
different use of the ALDress
OyL1or avy’ Be GUCLess rui,if Use

is made of the object code core

CAE Fe AT POA
Rig NOU

my RIVET i ARPIPPAIES

bas be ui a
r
t

Page fF Rrra ers (MoS omer LOA 1c Hud i
oii CAE RE

Author

bad WE “oS Reference p_Opp-1166
19

are Version /Date 1/29.4.75

J G Slee

PSM

Number £, oe Messare Meaning

106

107

108

109

OORE FOLL
. ~DATA

CORE FULL
DATA .

CORE FULL
DATA

CORE FULL

DATA

- into any of the available free

' the data requirement must be

This is an object program data
overflow. The canpiler-
generated data area, see 5.4.1,
will not fit into the available
space in module zero. As this
is the first data area to be
allocated the MLB and MUB
options for module O should be
altered to increase the
available core,

This is an object program data
overflow. The carmon area
is too large to fit into the
available space in module O.
Either the ccrmon size must be
decreased or the MLB, MUB
options altered to increase the
module zero available core.

This is an object program data
overflow. The data area,
including local data, constants
address constants and library
parameter blocks will not fit

area(s) in module 0. More
space in module zero must be
made available for data, or

reduced on subsequent loads.

This is an object program code
overflow. No room is left to
take the 10 word area for the
entry code sequence, see 5.4.4,
As this is the last area to be
allocated, the area available
in module zero Should be increased
or the data requirements decreased
or a unit of canpilation placed
in another module.

Loading
Halts

Loading
Halts

Loading
Halts

[r
a
n
e
)

2
woe

dl
La
na

ats
eet

!

GAtr a

MOOR TYR pense Cae pos fe No fog ht dae

wWoeiduw EAPC DL

3 i fh ee EF VARESE mrp reer pe PERE
Hie ae ee sod bi aghe dd i aka dead j MY RANIGS Pasesd Cha hd

e 2 iY 4 PALES
Bucs Rae & id fon &

Reference p_opp-1168

Page 20

Version/Date 4 /29.4.75

UNKNOWN

to any vaid user command.

Author JIG Slee

Number Message Meaning Result

110 COMMON CHECK | The size of common in this unit loading Halts
FATLURE of compilation is not the same

as that of previously loaded
unit(s) of compilation OR a
Common segment unit of compil-
ation has been loaded..

11 LAS/CLS © The loader label stack has loading Halts’
OVERFLOW overflowed. This may be over-

. come by loading the units of
compilation with the largest
number of forward references
first and those units contain-
ing the most ccnmon label
declarations last. see P--SYD-116¢

section 5,

112~- INVALID Tape read is not a valid RLB loading Haits
113 TAPE tape, or has been misread.

4.1.2 Non-Fatal Error Messages

Number Message Meaning Result

400 INVALID TAPE| Tape being read is not of a The tape is
BLOCK . valid RLB format. Possibly rejected, An

the tape is being loade asterisk is ocut-
"back to front". put awaiting

, instructions fran
the teletype.

© 401 MMAND.. First three characters of the The command is
command input do not correspond ignored and an

“asterisk pranpt
is output awaiting

a valid command,

CLUOTT AN Reference -P-OPR~1166 fc bao bo i n ae ae insets Page 21 +
ELE % mks Stes Boe py fea me bo,

a

Ls OOo | hued 2 ba : V oF S ion /Date 1/29, 4 75 ‘

— Author JIG Slee i:
is Jt

. 3

— 7

t

Ly. Number! Message Meaning Results

a 402 COLMAND {This coamand cannot be input | The carmand is ignored : | ILLEGAL at this stage in the loading | and an asterisk pronpt °
- sequence, is output awaiting a

mo valid load-time command.
| See 3.2 for details.

— 403 | PARAMETER The parameter(s) in the. — The cormand is ignored
[| INVALID comnand string are not valid | and an asterisk prompt ¥
Ls or maybe inconsistent. is output awaiting a

valid command. a

| | . a 405 LAST LEVEL No RLB tape has been’ sucess~ } This command is ignored _ NOP LOADED fully loaded at the level and an asterisk prompt 4
j, Jast specified OR in the is output awaiting a a L multi~level case, not all valid command.
| Levels have been read in,

‘1.
| 406 COMMAND One of the mandatory This command is ignored .

ERROR | parameters is missing. and an asterisk prarpt
7 i is output awaiting a
L | valid command. 4

on 407 LIBRARY LOADED; An attempt is being made to | This tape is rejected
L | ON THIS LEVEL | load another program tape and the loader awaits

; after a library tape has been] instruction to change
— : loaded at this level OR the level, or continue

 LEVel option has not been loading at this level. LJ j Input to change. level after
| the LIBRARY tape(s) have

i | been input on the previous
| i level,

408 INVALID TAPE | An attempt is being made to | the tape is rejected.
= joad an invalid RLB.tape OR | An asterisk pranpt is
_ an RLB tape has been output avaiting
. incorrectly loaded. instructions from the ;
| | teletype concerning the
LL next tape to be loaded. :

409 | LIBRARY NOT | A library tape has been . The library tape is
La EXPECTED loaded at this level before | rejected. An asterisk
- a program tape has been prompt is output eawait-

fi. accepted. ing instructions from
LL

[

Orsae

the teletype for loading
@ program tape at this
level.

(GE ia 1p

aw, 2 t re § Bey nye age q a4 aa Cy :

7 Lb tay ne ih ut i AMS
- Reference P-OpD-1166

Page : (99

- Version /Date 7 /29.4.75

| Author JIG Slee

Number | Message Meaning Result

[| 413 ADDRESS NOT The ADDress option has been | An asterisk prompt is

AVAILABLE used specifying a previous- | output awaiting further

ly allccated area OR the ADDress and GO or just

i address specified overlaps a GO option input.

L module boundaries.

| 414 NAME DECLARED | The Conmon procedure desig~ | All references to the

.. TWICE nated has been declared in Common procedure apply

— procedure a previous unit of compil- to the first declarat—

name ation, ion; the second is
ignored, though still

7 > loaded. Loading cont~

| inues.
i | ,

415 ~ | INVALID TAPE | see 408 see 408

: 420
LJ

tj 421 COMMON LABEL | A common label declared in This label declared
i DECLARED the current unit has been in the first unit is

TWICE declared in a previously used, Loading
7 loaded unit. This includes | continues.

[| the case where this tape has

, been loaded previously. y

' 422 INVALID TAPE | See error 408 see error 408

Lu

Lo

|
Lo

PATS ALILTSEOO Reference P-OPD-1166 Ae A CS Referer | 7 fat need Lame
Pee 23

|| GANS Merrr hoes ae Lo wees bee bial Version/Date 1/29,.4.75
— Author J G Slee

i.
- ;

[_ 4.1.3 loader Software Error Messages

ma In. this case only the error mmber is output. Error
| numbers are 700-999 and are all fatal errors, causing

i . loading to halt. They arise due to Loader inconsistencies
_ ’ and should be referred to Maintenance. -
| i
Ls 4.2(4.1.5.2) CORE UTILISATION INFOR MATION _

. Object Program Core Map
|

. The following information is output by the Loader, if the
ro core man is not suppressed by the MAP option, when the CORe

command is used. Note that in all cases core area bounds
: are inclusive

CORE AVAILABLE

MODULE BOUNDS
[| O <current Lower /upper bounds’ >
LJ 1 etc.

etc.

m7 ,
| For each unit of compilation all that is relevant of the

following information is output.

| PROGRAM
~ LIDRARY
4 MON <name of unit/sub-unit of compilation >

| SEGMENT | :
Lo LIBPROC

i) ; PROCEDURE’ < name > ENTRY < address’ >
U ° | LINK ° < address’ >

f FIXED CONSTANIS AREA <lower bounds» -— <upper bounds>
Ls MMON AREA " "

DATA AREA ; " . "
| CODE AREA " "
L! SWITCH AREA a" au

[| UNIT CODE BOUNDS <lower bounds» - <upper bounds> i

— The following messages are output if appropriate

Z UNDECLARED COMMON PROCEDURES
UNDECLARED LIBRARY PROCEDURES

PSM.

ar
 Am PP yee TE ge Ete

yc hea gh bacte see fag
vas UE eke oe AE Eye bas nnd OP

Reference P-OPD-1165

Page 24

QO 4 ¢ Lan Version/Dats 1/29.4,75

Author J G Slee

uo

{counion }

By invoking a suitable option, ‘the user can

of the undeclared procedures, thus:

UNDECLARED PROCEDURES

LIBRARY

At the end of loading a level the following message is printed

LEVEL <level numbere ENTRY AT devel entry point>

At the end of loading the following message is printed

PROGRAM ENTRY SEQUENCE < entry point »- <upper bound?

¢level numoer?

CODE CHECKSUM <checksumn of code in units» (OCTAL)
AT LEVEL

< procedure name»

then obtain a list

i

i
a
 EP EME ALPES Tare Reference P-OPD-1166 LUG AViuis ; r
e
y

ARO
a APE Py

| Page 29

- CG CATED Version/Date 1/29.4.75
a Author J G Slee

5. LOADER STRATEGY

m4 This chapter explains the algorithms adopted by the Loader
to optimise the location of compilation units within the
object machine and describes. the additional code and data

rs areas generated by the Loader.

i |
La Instructions generated by the CORAL compiler are not

changed by the Extended Loader save to resolve addresses
| | and make then core relative rather than code relative.
| | For details of object code sequences generated by the

CORAL compiler for individual data declarations or
7 source statenents see chapter 5 CORAL Canpiler Users

: Manual,

— 5.1 OBJECT MACHINE STORAGE ALLOCATION
H | *

us 5.1.1 Description |

ry Object code of a CORAL program contains data and executable
om code held statically at runtime in the object machine core

store.

I

i Data resides in store in module O and is
_ absolutely addressed. Code may reside in any core store

my module.

| ;
Each unit of compilation comprising a program has a data and/or

a code area associated with it.

Ls The following diagram describes, in outline only, the runtime
storage allocation of a program comprising a number of units

| of compilation. The diagram assumes that no operator
intervention has been taken to adjust the location of the
code for a particular unit of compilation and that loader
optimisation is inoperative. As will be seen in 5.3 this is
a simplified version of the actual loading algorit

, Ve eIaRY PET YT AUER ” Peterence P-CLD-1166
(AIP. MARCOND ELLIOTT AViGin ene

“ ege : a

AAGER Version /Date 1/29.4.75

Author J G Slee

ROOM VTE EY!
Ud tes eV ERE L A be

MODULE 9 KA AA AEE WAN \ Aig 3 soy
FIXED DATA
COMMON DATA

UNIT 1 DATA

UNIT 2 DATA
DATA AREA

UNIT K DATA ;
ENTRY SEQUENCE

YON NUN UN UN X_N

MODULE | ; / } i 7 / / / 7 /

/ / / / / / / |

va

G—~—.-8 166 (MOU)

/

2
2
 Wie /

Wi 7/ i Hi} Uy,
UNIT K CODE

Pll fff liifi ff fii
MODULE M+]

UNIT K-1 CODE

me, ‘
~

3

MODULE N i iy a ae | 1 EE ET REPRE SE SE

, UNIT 3 CODE

UNIT 2 CODE

UNIT 1 CODE

Simplified Diagram of Object Machine Storage Allocation

Note: -address 8 in module 0 equates to the MOL of U.M. 5.1.1. This

° is a default address and can be varied by user cammand.

Hf wnased core areas

s rescribed core area
NS

Mi ELLIOTT AVIOINCS | Fenn’ P-OPD-1268
Page af

om CVePeaims a7 IA ch
(820 Lue AT EiUL LUALAIA Version/Date 1/29.4.75

as Author J G Slee

—

e
e

5.1.2

-The Loader loads the object program within the module bounds
set by the user to describe the intended object machine.
Normal default values for these bounds are: :

‘Module O lower bound - - 8
Module O upper bound ~ 8166
Module 1 lower bound 8192
Module 1 upper bound 16383 .

@
e
e
e

24576
32767

Module 3 lower bound
Module 3 upper bound

Commands available for varying the number of object machine
modules and the bounds within each module are described in

3.2.1.

In general the data area for each unit of ccampilation is located
at the lowest available address within module 0. A detailed
description of the components of the unit data areas is given
in 5.2.1. The common data area loaded is that which accanpanies f
the first unit of compilation being loaded and it is assumed that
all subsequent Carmon data areas accompanying the following units
of compilation are the same (a limited number of checks are

performed by the Loader and are described in 2.6).

The code area for each unit of compilation is loaded fron the
highest available object machine module until the remaining space
within the specified module bounds is too small for the current
unit whereupon the next highest module is tried. Reanaining
space in the highest module is used for a subsequent unit if
possible. The Loader maintains an available core map which
describes free space in each object machine module and only
when the code area of a unit of compilation will not fit in
any module does it report that core is full.

Loader Generated Information

‘In addition to locating the code and data components of a unitof
compilation within the object machine, the loader. generates
a number of code and data sequences which are necessary

ingredients of the loaded program.

Only two of the loader generated components are specifically

' mentioned in the Object Program Core Map (4.2):-

~ Fixed Data Area;
-‘: Program Entry Sequence.

Other code sequences and data areas generated by the loader are
included within the bounds of the unit of compilation code and
data areas for the purposes of producing the Object Program Core

Map.

Reference p_opp-1166 = a\ ja
BA Pane |

bh age 28 3

Version/Date 4 /29.4.75

co All the loader generated information is described fully 4

in 5.4, however a diagram of the Fixed Data Area is

[included here for parity with the Coral Canpiler “

i Users Manual. i

if . ~
i ;

MOL Absolute address of level 1. entry “
‘rl os

| | MOL + 1 Mi i 1 2 " |

m ui tt tr 3 W

| | a

bed > 1 Wl i hoo 7

J

a
a
n

yt
Lo

Standard constants for use by the
object program

3

Le
ce

wm
sa

d
B
a
c
t

o
e
s

Loader Generated Fixed Data Area

Ee
cu
at
ea
te
nt
t

|
:

4
sa

mo
ne

en
et

e

(G IM? MABCAM ELUOTT AVIONISS Reference P-OpD-1166
a £4 Pie pales wa

Page 29

Version/Date 1 /29.4.75

Author 3 G Slee

Ae CYTES
J2bu & Bad ® it bn

5.2

5.2.1

5.2.2

DATA SPACE ALLOCATION

The data area of a unit of compilation contains CORAL
- data overlayed according to block structure and compiler

generated data (strings, constants, addresses and workspace).
This area may include additional data space generated by
the Loader to. contain library parameter space, and/or
loader workspace. .

Data space allocation for each item of CORAL data is
described in U.M. 5.2.

The various sub-divisions of the unit of compilation data
area are aggregated by the Loader and are reported on the
Opject Program Core Map as a single contiguous area.

Data Areas

There are3 classes of data areas allocated by the loader:-

Fixed Data Area
Cormon Data Area
Unit of Compilation Data Area

The contents of the Fixed Data Area and its use is described

in 5.4.1.

Data included within the Carmon Data Area is Wholly defined by the
CORAL compiler and described in U.M. 5.2.

Unit of Compilation Data Areas include data as described in
U.M. 5.2 and in addition contain space for library procedure
linkage and parameters, The allocation of information for
communication with external library procedures in this way is
wholly under the control of the loader.

Allocation Strategy

AS described in 5.1.1, allocation of data areas is confined
to module O of the object machine and proceeds from the
lowest available address to the highest.

When no contiguous free space exists within module O of
sufficient size to accamiodate a data area then the loader
reports that the core is full and halts.

Allocation of data areas proceeds in the following order:-

- Fixed Data is allocated when the first unit of
compilation is loaded and occupies the lowest
available locations in module O.

- Common Data is allocated from the top of the Fixed
Data unwards immediately after allocation of Fixed
Data,

|

|
_ GAP PAAR SOS REEESPP PR ALEC TEAS Reference p_opp-116¢

bwaead ‘eters aid GLUE ii r AVIG ihe P-OPD~-1166

Page 30
O©Onfe EYTEMNEN POAReE
weiss Eee db Ei weed LU Tere e | Version /Date 1/29.4.75

Author 5 G Slee

e
y

The size of data area for a unit is a function of the loading

It consists of the data area as generated
plus linkage and parameter space for library

procedures referenced by the current unit of compilation which were

order of a program unit.
by the CORAL camnpiler,

Unit of Compilation data is allccated as a contiguous
area in the lowest available area of module O at the

Since code may be allocated within
module O (5.2.2) unit data may not be contiguous

tiem of allocation,

~ 3 Paar

with the last data area allocated.

not referenced by previously loaded units (see U.M.
an Inter-module work area if the current unit of compilation is the
first on this level.

The following diagram illustrates the strategy described above:

A\A\VAAV AAA A

w
e

MODULE 0

FIXED DATA as

COMMON DATA
UNIT | DATA + Proc X Parameters

+ work area

— ff LO LL LLL LL

UNIT 1 |

UNIT 2 DATA + Proc Y Parameters

cf i fff
LLL fs LL,
Uh 7 7

7 - LLL,
MODULE N

UNIT~2 Calls library Proc x

5.2.3), plus

Calls Library proc X

and Y

i
o
y

RE iE

cay

wed Conch A

aE EEL LOUOP ALORUP OS 2 P-OPD-1166
EO ELUIOTT AVIGHICS Reference: } }

Page 3d
eufe PLP rae 3 Pr . oa J2UC cALCMUCU CUAL Er Version /Date 1/29.4.75

woo Author J G Slee

Notes:

5.3

1 The unused area between UNIT 1 DATA + Proc. X
~ Parameters and UNIT 1 CODE is not sufficiently

large to contain UNIT 2 DATA + Proc Y parameters -
although it may be large enough for UNIT 2 data
on its own.

2 UNIT 2 DATA includes Proc Y Parameters but not
Proc % Parameters since since only one allocation
is required for library procedure linkage and parameters
and this has already been done for procedure X.

CODE SPACE ALLOCATION

The code areas for a unit of compilation contain executable code
for CORAL statements plus switch arrays and jumps for common
labels. In addition, the code areas contain Loader generated
executable code sequences described in 5.4,

Code generated for each CORAL statement and for switch arrays

3.) an

5.3.1.1:

is described in detail in U.M. 5.3, U.M. 5.4.

Code Areas

Two types of code area exist for each unit of compilation:-

- Code Area

- Switch Area

The bounds of these areas are detailed separately on the Object
Program Core Map (4.2) but are considered by the Loader to be
contiguous and hence are always allocated as a contiguous area.
In all sections of the manual other than 5.3.1.1 and 5.3.1.2,
the area described as the Code area or Unit of Compilation
code area is taken to mean the combined code and switch areas.

Code

The unit of compilation code area contains the executable code
generated.for the segments of a unit and is loaded such that the
first segment in the source listing is loaded at the low end of
the code area, and the last segment compiled is loaded at the
high end_of the area, ~

In addition to executable code produced from CORAL statenents
this area contains :-

-——~ jumps to Common labels
-~ precedure call linkage code.

fi\ Fs PERIL AUB S Reference P-CPD-1166 te ig” dU | | Po Bali iu

a an Page 32
7 RYYPOMAEM PAAMNSD Vnapeiens /Mete 1/00 4 98 bs eA RE ELD URS he BRL OES Version /Daie 1/29.4.75
— . Author JG Slee
rod
| I

_ 3

- For each common label declared in the source program, the
i compiler adds to the low end of the code area a jump sequence

consisting of two instructions.

ry _ : , | | Procedure call linkage code, consisting of two instruction Loos : : :
Jump, sequences, is included at the low end of the code area

ms to facilitate communication with external procedures.
) |

joi : : Lo The diagram below demonstrates the structure of the code area:

[

m™

— . low core ;

| ~ : . . (Communi cation LL Loader generated: Procedure communication sequences

a .
Je

| 4 “S Entry
Ls Code .. Segment 1] code

generated ~

. by Her ; \ CODE UNIT
Ld comps re 3 | Executable | AREA Sane

CODE

code | BOUNBS Segment n code
|
|

4 . ,

Switch area } SWITCH a . AREA | _ Communi -
iI .
a Loader Fixed Code Sequence cation
a generated _ ,

| |
Loi

ry high core |
fo] ‘ : .

| >

a

7
a

|
Lae

Lu

peas

be

n
o
e
l

b
e
e
t
s

be
de
nm
er
re
n ny

R
e

o
e

LAARCOAE CLILATT Het Reference — p_opp--1166 MARCONI ELLIOTT AViGNIC er Seeesilses Page 33

Version/Date 1/29 4.75
a Ww

YJLUU CALEDICi

Author I @ Slee

ee ee:

5.3.2

Switches

The unit of canpilation switch area reported on the
Object Program Core Map consists of the switches
generated for the unit by the CORAL compiler (U.M. 5.3)
and a Fixed Code sequence generated by the loader.

Fixed Code is not appended to every unit of compilation
but is present in every core module of the object machine
into which code is loaded. For a miti-level program there
is one copy of the Fixed Code for each program level

represented in a core module.

Fixed Code is appended to the first unit of compilation
(at the current program level) loaded into a core module
and is a constant 16 words in length. Section 5.4 describes
the code sequences.

The diagram in 5.3.1.1 shows the positioning of the Fixed
Code sequence, when present. :

Allocation Strategy

As was described.in 5.1.1, allocation of code areas proceeds
from the highest available object machine address down to the
lowest. An estimate of the size of the Unit of Compilation
code area (code + switches) is generated by the Loader and
a contiguous block of core is allocated at the most suitable
location in the object machine.

In the simplest cases, the code area is allocated at the
highest available address, but 5.3.2.1 and 5.3.2.2 will show
how the Loader and the user may alter this scheme for a more
optimum loading pattern.

Irrespective of how the Loader chooses the core module best
suited to contain the code area for the current unit, the
loader has to estimate the size of core block needed for
the code. 5.3.1.2 described the algorithm for determining
whether Fixed Code must be appended to the code area. In
addition an estimate is generated for the size of the procedure
communication area, This area contains two instructions per
procedure referenced by the unit of compilation and not declared
within it.

Once an estimate for the code area size has been made and the code
area allocated then loading can commence. At this point the
area reserved for procedure communication is relinquished since
it is not expected that all of the area will be used. In fact
only two instructions are required within each core module for

7

CAVE

= e
e

a
l
t

C
o
s

f

MARCONI E FLUIGTT AM NALTES Reference P-OPD-1166
Pees 2 Te ATRL OTLGLETY)

Page 34
Of ai) oh ae aah SAME 4 LAr rm : ;

wZ UL ind % i ai 1G bet bow ba LU Fs a UeH Version /Date 1/29.4, 15 .

Author ‘J G Slee

~~ 3

references to procedures external to Lie module, although
estimates are generated on a unit basi

The diagram below shows how this strategy develops during
loading of 3 units into one core module

low ;

ge A cg ee
ee eee ee ae |

és UNIT 3 CODE Estimated size of

Ne tuye. Calls procedures A,B,C,D , UNIT 3 CODE BOUNDS

UNIT 3 CODE a
BOUNDS - ce ee, Eire Sabre: ee esi | ®

. So cals ad ‘imei ; v a Area for Poo Po

éy P ke .

:
|

Actual UNIT 2 CODE y Estimated size of

SOU: 3G trnO Calls procedures A,C,D,E ! UNIT 2 CODE BOUNDS BOUNDS
Declares procedure A '

Vv V
4 4s

PA Pe Pe Po {

Actual |

UNIT 1 CODE UNIT 1 CODE + FIXED CODE) Estimated size of
! 4 i] BOUNDS Calls procedures A,B,C,D 4 UNIT 1 CODE BOUNDS

Ld

high | Core module n

Diagram of allocation of procedure communication areas

Notes 1. Px= 2 instructions used to communicate with procedure x.

Fixed code is allocated with UNIT 1 as the first unit in

the module.

.- Space for P, is not included in UNIT 2 estimates
as it is declared in UNIT 2. P, is included in
UNIT 3 estimates because the loader does not know where

procedure A is declared when estimating.

If the available space in module m were not sufficient
for UNIT 3 estimated size the unit would be loaded in a
different module even if there was space sufficient for
the actual UNIT 3 size. ‘

The actual redundancy in generated code is only Pa

(2 instructions).

(C HP berwerd lesen td

= All Sa DHOm mesic

IV AARCONI E EI LLUIOTT] AVION Lcd Reference P-OPD-1166
v nas

Page 35
one EYTZAINED TGAntR

G2 \ IL CATE WEL LUAU Version/Date 1/29.

Author i G Siee

4.75

Dee e yd

~ 3s
a 8

The following two sub-sections (5.3.2.1 and 5.3.2.2) describe
how the actual core module chosen to contain a unit of
compilation differs fran the simplified highest to lowest
scheme so far described, whether due to user intervention
or loader optimisation.

Loader Module Allocation Algorithm

The Loader determines the optimum module to contain a unit's
code by examining calls to external- procedures already loaded
in other units of canpilation and calls to library procedures
declared in the current unit of campilation.

The basic rules to be applied when predicting the location
of a unit of compilation are as‘follows:-

1) The Extended Loader attempts to minimise the number
of procedures with inter-module calls, be they Common
procedures or Library procedures. Therefore, if the
current unit of compilation contains references to a
previously declared procedure then the loader gives
a one "point" weighting to the core module containing
the declaration; this is repeated for each previously
declared procedure referenced in this unit. If the

unit contains a declaration of a procedure previously
referenced the Loader gives a one "point" weighting
to each core module containing a reference to the
procedure; this is repeated for each procedure
declared in this unit and referenced externally.
The Loader has thus set up a Module Preference Table
for this unit which will decide the location of the
unit subject to the further rules:

2) Where a unit of compilation has equal weightings of
preference for two or more modules the highest module
is always preferred.

3) The core module must have a contiguous free area
of core large enough to take the whole of the unit's
code as defined in 5.3.1, where the procedure call
linkage area is the maximum, but not necessarily
actual, size of the area,

4) The area chosen,if there is more than one free block
in the module, will be in the lowest block of large
enough size.

(GAP
RARROAME Cit IAT T AUEGTINS
it fed § fed 3 i Wi
Whe AOU ee PAN fsivileed

COIMM Tse neers ItAAACH
% 4 *

UZUL CALEINUCU LUAUCA

Reference P~OPD-1166

Page 36

Version/Date 1/23.4,75

Author J G Slee

Module

5) The code block will be located at the high core
end of the chosen free core area.

The following example ee the use of these rules.
With the layout on the left, the Loader selects a module
for the unit on the right.

Data

MMM
YUM

Unit with calls to W,Z,B;

declaring C

Sit

a .

Sth choice

choice \

WML.
Unit with calls to W.Z

Unit declaring A
Vi a a PL LES DG ET IG GE:

Unit with calls to F

3rd Unit with calls to A,CI
amet X,¥,D; declaring W,Z,B)

choice =

4th choice

oi
2nd choice

Vt: Vy
Unit with calls to .W;

declaring X.Y

AA unused core area

Applying the above rules, it is clear that the modules have a

preference weighting of 0:0, 1:4, 2:3, 3:0, 4:3.

Module 1 is thus the optimum module, and the unit will be loaded

immediately below the unit. already present, if there is enough

- roon.

If the block was too big to fit into the module 1 free area, and

the area in 4 was large enough the unit would be loaded there,

and so on, as shown in the diagram.

loa
act

cms
aoi

d

(c
a)

5
)
 Aah 1S Aaa

evs ed tele a
e

P
T
?

a = =

SEIOT YT ATS yAEe Reforemce P-OPD-1166
ELLIV Mu iliibea

Page = 37
ry FP Pers

apnea

WAUEE Version /Date 1/29.4.75

Author J G Siee

‘ arate) ryren ty Py
i LT Se

a

GLU Lf a ee a NLD he bal

«

gr
ee

ne

User specified)
Start address

User Module and Address Allocation

The user can deternnine the module into which the current
unit is to be loaded by the use of the ADDress option, see 3.2.2.
The restricting factor is that there must be roon in the module
for the ESTIMATED SIZE defined in 5.3.1. If there is room
the Loader will locate the unit's code at the highest available
address in the First Free block available in the module
requested. :

This option, of defining the module into which a unit of
compilation is to be used, may be used to locate units with
references to the same procedures in the same module, while
Still leaving roan in other modules for library procedures
and/or coordination with the normal Loader optimisation, as
described in 5.3.2.1, the optimum core usage can be attained.

The user may determine the exact start address of a unit of
compilation's code area, by using the ADDress option (see 3.2.2)
and specifying the module, and the offset within the module.
The diagram below demonstrates that the address specified is the
base of the Code area (as printed in the core map) and NOT the
unit code base (lower bound of Unit Code Bounds), since this
may be ambiguous.

pete wens omy cums user 0 amen emus

: ‘ actual -,
Procedure communication es.tim ;

Gu ated size

Common label communication

Segment 1 code

: > CODE AREA
: NUNIT

CODE
Segment n code : : BOUNDS

P

Switch area \. switce AREA

Fixed Code sequence

MARCOM ELLIOTT AVIGACS Reference p_opp-1166
WIAD ELLiggt Pb AViGiuiued err P-OPD-1166

Page . 9968 ENTERS S 38
J“42U0 CALC Version /Date + 5 re j | sion/Date] /29,4,75

vf ee Author JIG Slee
mre,

5.4

5.4.1

: ed
It should be remembered that the Fixéd Code Sequence is only
included on the occasion of loading the first unit on a

‘particular level. It is a fixed sixteen words in length.

The CODE and SWITCH areas are of fixed length for each unit
of compilation.

The procedure communication area estimated size is two words for
each procedure referenced, but not declared, in the unit of
compilation. This figure is used when checking that the area
specified by the user is large enough. -If it is, the procedure
communication area is deallocated and two words are allocated
as necessary, for each procedure referenced for the first time,
but not declared, in the core module selected. The actual size
of the procedure caamunication area is the sum of these two word
links, and this area is included in the Unit Code Bounds.

NOTE: Each library procedure is treated as a separate unit.
If the user wishes to keep complete control of

library allocation, each library procedure should be
on a different RLB tape. The ADDress option can
only affect the address of the first library
procedure on an RLB tape.

LOADER GENERATED CODE & DATA

In addition to the object code and data produced by the

Campiler, the Loader inserts code and data, where necessary,
as detailed below.

Fixed Data Area

The first data area to be allocated in module zero is a Fixed
data area. This is of length 123 words plus 2 words for each
object machine core module. This can be split as shown below,
into 4 level entry point words, -119 constants and 2 words/
module. .

The first four words contain the object program entry points
for hardware levels 1 to 4 respectively. The level 2 to 4
entry points are always set to -l1 in the case of single-level
programs.

The next 119 words are fixed constants used by the Compiler to
save sane multiple constant generation.

The final section in this area consists of module-relativising
constants. Each pair consists of a constant which is used to
convert an address fran module relative to absolute, and’one
whitch can convert absolute to module relative. e.g. for module 2

(instruction format) 2 O and /14 O.

The following diagram summarises the above:

MARCON) FL
Vik AELeLeT ab CLL

2+ MORIN
t gs

MWe

C0 % ev" ‘al at 2 alana ie 8) Pe Py

wid “tila Eve

i q
go, i sb 4 :
Bo bak Ub iid he Lats AUT

Reference. p_opp-1166

Page 39

Version/Date 1/29.4.75

Author 7G Slee

Level 1 Entry Point

Level. 2 Entry Point

W
w
 Level Entry Point

h words

=
 Level 4 Entry Point

o Ped Constants

a

J

Cs \ 119 words

Module Relativising
Constants

a

, 2¢M words

(m modules in object
machine)

sane MOMMIES Reference pono / ry iN, Hoh jbo H P-OPD-1166

7 Page 40

VeUu LAPCIVWEL LOAD: cA Version /Date 1/29.4;75

Author Ame: Slee

Feng

5

04.2

4.3

Procedure Call Sequences

If a procedure is called within the same module in which it is
declared the cenmunication can be made in the following way:

STS LINK
J ENTRY

where LINK and ENTRY are those printed in the core map, save
that ENTRY is, of course, module relative.

Jf the procedure declaration is in a different module to the
reference, the communication can be made using the sequence:

STS PCLINK
J PCENT

Where PCLINK is the first word of the 3-word area allocated with
the first data area for this level (see 5.2.2). PCENT is the
entry point of the two-word Inter-inedule commmnication sequence
(procedure cammnication sequence of 5.3.2.2) for this procedure
in this module, defined as

PCENT IDB PCO
J IMENT

where POO is ane first word of the procedure commnication
block (U.M. 5.2.3.2), and IMENT is the entry point of the
inter ee coimunication code in this module for the current
level.

The latter is the first 13 words of sid 16 word fixed code
sequence (see Doreen) ViZEe g

ST WS2 (save accumulator)
/LD 1 (load entry address)
ST WS1 (store entry address)
COL 360000 (highlight module bits)
NEG PCLINK (load module-relative link)
ADD MODBIT (Add current module bits)
/LDB 0 (load B register with address of link
/sT 0 : (Store return address in link)
LD MODBIT ~ (Load current module bits)
NEG WS1 (Create module-relative entry address
ST BREG (copy to current level Bregister)
LD WS2 (Restore accumulator)
/J 0 (Jump to procedure)

where PCLINK, WS1, WS2 make up the three word work area (Se292))

Label_and Switch sequences
Th a pore inivsy Th aware At tT, s If &

Kj
 L £ ’ . 5 ; . 4 S NAMA bale Ulb Oona

level in each moditie are:

)

? i
M
t
n
 n
a

h
o
w
d

A\ Wa) RAARCAAH ELLIOTT AVIOARS Referance P-OPD-1166 fo\ed VilptuUidd ELL) b PAY Guill
{| Be Pages Al

O9Nf EYTENMEN TMANER ae ie arn
Gealse LAV hives BULLI IN Version /Date 4 1/29,4.75

Author JI G Slee

~3

ADD MRELAD
ST BREG
/J 0

where MRELAD is taken fron the second of the modules

module relativising pair at the end of the Fixed Data
Area, . and BREG is the B register location for the current
level.

This is _— for intermodule jumps to make the address module
relative.

5.4.4 Provram Entry Sequence

After the END = YES command has been used a program entry
sequence is produced and located in the top free area of
module zero, so that the program may be triggered from a module
zero address. The sequence for a single level rnrogram is

SAB (replaced by SH 0 for 8K machines)
IDB ENTAD
/J O

where ENTAD is the level, 1 entry point in the Fixed Data area.
For multi-level programs, the code is dependent on the program
‘entry level
E.g. for level 4:

ID * . ENTAD

ST 0 '
ID ENTAD + 1
ST 2

ED. + ENTAD + 2
ST 4
SAB (replaced by SH 0 for 8K machines)
LDB ENTAD + 3 .

/J 0

a r | ret cm DR Em FROM oy gm, Eon ati —% wy - WN Way With al eull ease Tr AMIMAIEO eee 4

(HP MARCONI ELLIOTT AVIONICS Reference p_opp-1166
tenet bend S55 4 rate vee

Ae My Pe, | DU EE 08 Gey ore A Page 4D

69} Eo OUR Fee glad pod ¥ PE teLa tim tet :
U44UU LAPIN OL LU er Version /Date 1/29.4.75 °

< = es ete

Author J G Slee

Appendix A Table of User Manual Sections amended or amplified
by this Document

g User Manual Reference Operational Docunentation Reference

e
e

e
e

N
N
N
H
H

W
N
H
D

e
o
)

w
o
w

D
e

w
h
e

° °

a
o
n

rp

w
o
n

re

m
W
O

N
E

N
o
r
e

N
O
H

° °

P
N
r
O
o
O
M
o
O
G

o
N

W
W

W
r

H

D
e

N
N
N

N
N
N
N
N

bo

C
e

e
e

Re
e
S

N
N
U
N
N
N
N
N
N
N
Y
D

G2

he
m
o
o
n

ND

°

m
S

08
9

0
W
w

ee

B
D

w
w
w

»m

O
R
R

m
H

me

C
1

no

fe
t

DO

be

N

ne
n

on
an

D
O
O
D
 BL

OT

OT

Ol
en

«©

wm
WO

NE
S

o
e

Appendix D ,) 3.1/3.3
Appendix E Appendix C
Appendix G Appendix D

(GMD MARCONI ELLIGTT AVIC} nie Reference P-OPD-1166

“7 3 Pag 43
Q9nf EYTEnnen inas a 3 : VJLUU LAT CIC LOAD cH Version /Daiel/29.4.75

- te Author JG Slee

[o)

Appendix B Object Machine Core Usage Diagram ,
a 0 (sed Appendix € for core

} REGISTERS utilisation map)

a — MLB = 0,384
: Fixed Data

Area tt
r} }

MODULE ac

0 519 Common Data
_ 520

Unit. 1 Data

| 537
538 Unit 2 Data
539

ot Faal

oe” vv

8164 _ 2 _ 8166 ENTRY SEQUENCE

HUB = 0,8166 8167 ABSOLUTE LOADER

AND
- 8191 INITIAL INSTRUCTIONS

MLB= 1,0

BD wv
= T a?

15159 ADDTHEM
a 15166

ae SUBTRACTTHEM

UNIT 2 CODE

5 15187
15188 7
15191 | PROCEDURECALL LinkAGe |

7 Folge COMPILER PRODUCED OBJECT UNIT 4
16223 wm CODE a VEIT de oe wc ao
15224 |INTER-MODULE COMMUNICATION

ti} 15239 CODE

ru fi\ Ta FAARCOME CLEINTT ALAS Reference D=L166 [; ER IP Vi PAU ELLIUE § AV uisive eee PxOPD-1166 Coad
Page 44

ANNO CVTRAIREN PAs HT F UU LAPRIWWEU LUAU Vereran/Date 1/29.4.75

PUNO” Ge Saae

“3401 COMMAND UNKN
*AND = 1,7000

’
~ 3
soe

Appendix C (E) Example of Loading Information

*AUT
*OOR = th

-

-

CORE AVAILABLE

MODULE BOUNDS
000000 000008 ~ 008167
000001 008192 ~ 016383
*MLB = 0,384
*OG

*«GO
PROGRAM EXAMPLE CORAL

FIXED DATA AREA
MMON AREA

DATA AREA

CODE

000884 — 000510
O00511%— 000519
000520 -- 000537
015192 - 015223 ty:

SEGMENT DEMON2
SEGMENT DEMON1
COMMON PLACE

UNIT CODE BOUNDS 015188 - 015239"

UNDECLARED LIBRARY PROCEDURES

*UND

UNDECLARED PROCEDURES
LIBRARY SUBTRACTTHEM
LIBRARY ADDTHEM

*GO
PROGRAM EXAMPLECODE

DATA AREA Q00538 ~ 000539
CODE AREA 015176.-— .015187°

SEGMENT DEMON3
COMMON =PLACE

UNIT CODE BOUNDS 615174 — 015187

UNDECLARED LIBRARY PROCEDURES

*O«- GO
LIBRARY EXAMPLECORAL

LIBPROC SUBTRACTTHEM
ODg- AREA Ai a .015167 - 015173

ENTRY 015167
LINK 000528

PROCEDURE SUBIRACTTHEM ~

UNIT CONF DAYANA COEDS OIS167 -— OVS173

i P- LA PER A mo} a ie SO Ye ea Forres 5

AT MARCONI ELLIOTT AVIONICS —« henemcptes 4
& , an b ty wo den mre aes 4 Lt XS

i

Conf Paurere* AIT
Foy

a 6s 4 P & } : ‘ 2
a bi

Reva be 2 arsion /Date 1/29.4.79 Fe ey bee ee REE: FE TENG poe :
Aldts Ls Eb eR LP irk ; Versici

Author J G Slee

CODE ARGA 015159 -— 015166

PROCEDURE ADDTHEM ENTRY 015159
LINK 000534

UNIT CODE BOUNDS 015159 ~ 015166

*END=YES

PROGRAM ENTRY SEQUENCE 008164 - 008166
AT LEVEL 000001

CODE CHECKSUS 247476 (OCTAL)

Bp MARCON ELLIQTT AVIGHISS Reference P-CPD-1166
Vormad a ew be A i L

KA. \j
| UE Lm ikea S AW TORE are) the

 f
e

Page 46 Gane EVTennsy inane
GLU LAr vf ci wi Ch L Ls AUK Version /Date 1/29, a 75

Author JG Slee

Appendix D -— Minimum Operating Instructions

The following instructions assume that the user is using all elie
default options.

Single level

1) Load Extended Loader under hardware initial instructions

2) Trigger to 8.

3) Load 1st program tape in reader

4) Type GO cr

5) Repeat 3 and 4 for each program tape

6) Repeat 3 and 4 for each library tape

7) Type END = YES cr

8) Tear off tape

9) Load program binary tape in object machine under Initial Instructions.

LO) Tenewer at entry point specified by core map.

1) load Extended Loader under Initial Instructions

. 2) : Trigger to 8.

3) Type LEV = n cr for level’n programs (n = 1,2,3,4)

4) load lst program tape on ee level. in reader

5) Type GO er ,

6) Repeat 4 and 5 for each program tape on this ‘level

7) Repeat 4 and 5 for each library tape on this level

8) Repeat 3-7 for each level

9) Type END = YES cr

10) Tear off tape

11) Load each program binary tape in object machine under Initial
Instructions (not reading the legible tape number)

12) Trigger at entry point specified by core map.

