r

Boocl HRo.

ams Limited
L Xent FAET2XX

FEQ(&YC()H:'F{’Qﬁf\VlG ¢ Sysie
ier,

Alrport Wors, Roches

A GEC-Marcont Electronics Company

Moy (G834

Telegrams Elictauto Rochesier

Telex: $8333/4

«

OThe Copyright in tia documant L& the progerty of EList Prathers
express terme Ut is to he treaad ss cenfidentiol and thet it wmay not be copied, naed or diacloved 1o Lo

writia

{f
- o

M.A.S.D.
LIBRARY,;

This Book
Software

forms. pert of the MAS
Tibrary.

If there is
page
Copy of the
an UPDATING
so it could

If there is MO st
X5 OK D "t°mp on

—

- g {: ‘A‘-"{'k.&.

i

{Londxt Limited, The docuwment is sun.al

i by tals

S I

]

T
- B

]

A S

-y

PREFACE,

This book describes the following 10 tapes:=-

920C CORAL MACRO PASS, - CAP BOREHAMWOCD VERSION 33B;
920C CORAL PASS 14, CAP BCREHAMWOOD VERSION 33Bj
920C CORAL PASS 1B, CAP BOREEAMWOOD VERSION 3B;
920C CORAL PASS 2, CAP BOREBHAMWOOD VERSION 3B;
920C CORAL LOADZR, CAP VERSION 3, SmPTEMZBER 1974;

920C CORAL DATA RETEKSION, -CAP VERSION 2, SEPT=EINEBER 19743
920C CORAL QOBJECT DUMP, CAP VERSION 2, SEPTEMBER 1974;

CAPQF, TJF VERSION 16/2/76, . R.L.B. Mode 3
o 3¢ =X 25D LCATH, . Binery lode 3
CORAL 16K DXTAEIDED LOADER, : Binary Mode 3.

A These tapes form a CORAL Compiling System for 900-Series 18-Bit

Machines, Although written initially for a 920C their use is not
confined to this machine.

The CORAL Lanzuage is defined and described in Book 302,
CORAL INFOIMATION.

!

This book is in two sections. The first and larger section,
"CORAL COMPILER USERS' MANUAL" relates to the first 8 tapes,
The second and smaller section, "EXTENDED LOADER", describes
the changes to the "USERS' MANUAL" when one of the "EXTZINDED
LOADER" tapes is used rather than the "VERSICN 3" loader tape.

The CORAL Compiling System's minimum compile-time requirements
are a 920C or 905 computer (most passes will not run on a 9204,
920B or 203, or 920 computer) with a punch, reader, and
preferably a teletype. Pames 2 & 64 of the Users' Manual herein
state that 16K of store is needed; but for all except "practice™
programs, 24K is needed (and the directives on page 70 will have
to be used).

The system as described herein is a 5—pa§s paper-tape oriented
system. 905 users with a Disk ‘and at ledst 32K of store,
available at compile time, are reecommended to use the SODAR
system described in Book 310, 905 SODAR,

oo Cod
- ~ R 2

The CORAL Compiling System (whether run under SODAR or not),
can be used to produce object code to run on any 900-Series
18-bit machine except a 9204 (including: 920B or 903, 92CM,
920C oxr 905), and of any size (from 8K to 128K), with just =2
tape reader for program loading.

For efficiency the compiler uses the "absolute addressing"
strategy, and the primary consequences of this are the following
limitations on ths user's programs:-

The data of the whole program must normally be placed in
the first 8K of storejy although non-preset data can be
placed anywhere in store if accessed M"anonymously™.

On a 920B or 903, or a 920M, the program code itself must
2also all be placed in the first 8K of store, so the only use
of store beyond 8K is for anonymous data.

It will bve seen that 3 alternative lozders are available.
A1l 3 can produce a Binary tape of the Object program.
The advantages of the "VHRSICN 3" loader are:- '

The Binaxry tape p&oduced by it, for a given program, is
shorter than that produced by the extended loaders.

The Binery tape is in the stendard "A.C.D. 900-Series 18-B8it
Binary Tape Format, 1/4/70", whereas that produced by

the extended loaders is not. '

The Version 3 loader may be used in "load-and-go" mode,

unlike the extended loaders (which don't, in fact, load

anything). This reduces the system from "5 passes + Binary
Loading" to "5 passes including loading".
However the Version 3 loader restricts the user's progrem to_d/////////
" Jocations 556 to 8165 and 8192 to 14707; 1limiting the total

data space (other then anocnymous reference) to T609 locations,
from 8157; and the total data+4program space to 14124 locations,

from 128K.
The advantages of thebﬂEXTENDED LOADERS" are that:-
- These restrictions are removed.
The Exiended Loader can be run on an 8X machnine,

(which may be a 9208 or 903, 92CM, or 92CC or 905),)
whereas the Version 3 loader always needs a 16K store.

r
i
L

|

=~

| SR—;

o~ E

There are some compatability problems using these alternative
loaders. The differences in the Binary tape lengths and formats
imply that tapes made by the two routes, of the same program,
will be different; and I would imagine that the Object codes,
when loaded into core, will hot be identicaly either.

-

The implementation of the Multi-level environment, and of the
Run-time sumcheck, in the Version 3 and extended loaders, are
totally different: in a program using either of these facilities
a change from the Version 3 loader to an extended loadexr, ox
back, would require a change to the CORAL source.

The standerd "A,C.D, 900-Szries 18-Bit Bix

woduced by the version 3 loader, znd referred to on pag e T7 of
the User's Manual herein, is defined in

Book 106, 903/905/920 USEFUL NOTES.

This CORAL Cenpiling System operates in 150/48CII Teleprinter
Code, as veferred to on page 59 of the User's lManual herein.

In standard 900-Series terminclogy this is "903 Telecode'.

There is no CORAL compil er for the 900-Series which operates in
the alternate "920 Telecode". 203 and 920 Telecodes are both
defined in Book 106, 903/905/920 USEIFUL NOTES.

a‘y mahe Vo*ﬂat 1/4/70",

e

e

1
N

-

o~ . .
The originsl "CAP 920C CORALM™ was written, and updated in perts
twice, by CiP (Resading) Lid., for the Royal Alrcraft Istablishment
2t Parnboroush. A further partial update was produced by CiP for
RL, MEASL, Borehamwood. This sequence of events produced the first
7 of the tapes listed above, which are commonly known as
"Issue 3Bii or.4" (!). The extended loader was writiten by CAP for
MASD, MEASL, ai Ro.chester: the 2 versions listed above are 8K &
16X verblons of CAP's issue, modified to make maximum use of the
first 8K of store and with one error corrected.

These progrems arse known to contain numerous errors, but as more
are ¢till being didcovered I have seen little point in recording
even thosa alresdy known in 2 document updatad as infrequently as
I intend this %o be, I ghall endevor 1o keep 21l serious users of
the compiling svstem informed of 211 errors discovered, and
likewise would appreciate being informed ef all erxrrors found in
the system, &s I have issued it, with supporting documentsiicn.

I see little chance of these errors being corrected; particularly
in view of the number of organisagtions involved,.

The “CAPQRP" tape supplied in this package is a complete re-write;

it is an all-~ roqdd i*provemenu on the originel issued by CaP and
based on 903 oF wnilst meintaining full 900—~:T1€S compatability.

N
s
<

g

-

RS : ;

CCRAL I ACRGC PASS, AP BOREHANWOOD ERSICN 3B

CCRAL. PABS 14, . CAP EBOREHAIWOOD -VERSICN 3B;

__CORAL _PaS

9]
—
o
Q
g
lav’
o
O
-
=
Lid
%
=5
2
s
(@)
o
o
<
al
v}
bt}
(@
borc
AN
by

CC-T-Z.%‘:;L PASS 2, CAP

CORAL 1.OADER, CAP VERSION 3, SEPTIMBE 1974

CORAL - DATA RETHNS IOL., CAP VERSION 2, BPTEZFEER 19743

CORAL, (RJuCT DUrP, CAP VERSION 2, OEPTENBER 19743

mTT T oW irdd n) BTN 7
TJF PV F LJ..LC;\ l‘io/(/ K -\.QI‘ e a JUSozgic] De

S

——

]

]

TV LTI . :
i] IV G et RUGALIVW LT UWETUICLL v

v - r‘:
(LJ*' \ i J . CeEAL STOTIaT T DOTA e peeciT TR)
L Y R : AT S IR RS SN I YA e -‘t) P I , ..
AL ‘.-J . - - . l’_)w,».,.'-,]
' - : : agL
S grOT CTAL SUSARILER , e e
: - Version/Uate 1
e sira »
PRV RN I Eey . . - s . X
. N Authoi L Grant
f - - —-—\r--an-—-- ——e o
‘l ! ¢ o
. .4
= -6}

- ACKNOWL EDGEY ui.N‘.E‘S

This manual provides user informaticn on
the CORAL 66 Compiler for the Elliott 920C
computer written by Computer Analysts and
Programmers Ltd.

. We wish to acknowledge the supooLt ‘and
advice which has beoen received during the
production of the 920C CORAL Compiler from
the Royal Aircraft Establ shment (Farnborough),
" the Royal Radesr Establishment (Malvern) and
Marconi~Elliott Av1on1cs Systems Limited

(Rochest er).

: S . Reference Introduction

ROYAL AIRCRAFT ESTABLISHMENT

Page 2
LYY LAY R ANSARARDIY R . X ~
9‘\1\.’ .vutﬁe"\a. CeL VR] uvn-u - X VerSIOf'\/Date 1
USERS -MARUAL - Author L Grant

]

1

R

L L

R

A knowledge of the Official Definition of CORAL 66

"(if less than 8K of object code is produced this may

INTRODUCTION

(to which references are written 0D a.b.c...) and.
the 920C order code is assumed. ’

The language implemented is full CORAL 66 excluding
recursion and including the additional features of
partword arrays and shift operators together with a
method of producing multi-level object code. '

The minimum configuration for compilation of a CORAL 66
program is an Elliott 920C(205) with 16K of core store,
a paper tape reader, a paper tape punch and a teleprinter

be executed on a 920B (903) upwards compatible computer).

The following description summarises the contents of
each chapter: ‘ ' yd .
' /
Chapter 1: A description of the implementatioﬁ dependent
‘ features of the language together with an
expansion of the relevant sections of the
Official Definition of CORAL 66. (The full
CORAL syntax is summarised in Appendix A).

A description of the additional features
provided. ‘

- A list of all CORAL 1anguage symbols and

external character codes.

Chapter 2: A description of the constituents of the
‘ 920C CORAL Compiling System.

A note on the object code compatibility
for alternative machine configurations.

! N
S

GEAP

ROYAL AIRCRAFT ESTABLISHMERNT

Page 3
@200 COnAL COMPILER Version/Date 1
USERSE@%NPAL ’ . Author L Grant

Reference Introduction .

A

-

" A description of the purpose, mode of
operation and options prov1ded by each
program supplied.

A deséription of the general method of
interface with the user.

Chapter 3: A description of the operating instructions
for each program.of the 920C CORAL Compiling
System together with a summary of the
options provided,

Chapter 4: A description of the error diagnostic
' messages produced by each compiler program -
'~ together with any further diagnostic 4
information produced to aid the user

with program development.

Chapter 5: This chapter can normally be ignored
since all necessary user information is
provided by Chapter 1. However, if the
structure of the object code is particularly
important to the user it is hoped that the
required information is provided.

A general description of the structure
and runtime storage of the object code.

Notes on the optimisations performed
by the Compiler and methods of producing
-efficient object code.

A description of the interrupt handling
housekeeping code which can be generated
by the Compiler.

e

L...A.._.ui') L-.-—\"

-

id

e

W 5 [Fl

L.o-o wf

S

N |

s e

]

BAP

' ' Reference ~ Tntrod :
ROYAL AIRCRAST ESTABLISHMENT tro uction

Page 4
L @Rne CANLI Smrapil ER. Coe
uzvv L‘JH-I‘& vsiil?lbhg ‘ Version/Date) l
USERS ‘MARUAL - Author 1. Grant

-

B

, :444 9

/1

. L [

—

Note:

The following representations are used within the manuals

~identical in structure for each component

g

In order to simplify cross-referencing,
chapters 2, 3 and 4,which provide a

description, operating instructions and
diagnostic information respectively, are

of the 920C CORAL Compiling System.

’ 2 .~ carriage return

¥V null

GAR

' ’ Reference . Contents
ROVYAL AIRCRAFT ESTABLISHMENT]

. Page 5
$20C CQﬂAL C(}‘MPiLER Version/Date 16’/2/76
USERS MA‘NUA‘E,_ : Auth,or' Various °

CONTENTS

INTRODUCTION
CHAPTER 1 : CORAL LANGUAGE DEFINITION

CHAPTER 2 COMPILER OPERATION

se

CHAPTER 3 OPERATING INSTRUCTIONS

CHAPTER 4 : DIAGNOSTIC OUTPUT

CHAPTER 5 OBJECT CODE STRATEGY

APPENDICES: APPENDIX A - 920C CORAL SYNTAX

APPENDIX C ~ COMPILER OPERATION
APPENDIX D - COMPILER INPUT/QUTPUT
APPENDIX E -~ EXAMPLE PROGRAM

¢ - SUMMARY OF OPERATING

APPENDIX
. INSTRUCTIONS

A cetailed index is provided at the head of each chapter.

]

]

@@\4@ ROYAL AIRCRAFT ESTABLISHMENT

Reference 1

Page ©
Version/Date 1
Author L Grant

[44]

20C CORAL COMPILER
USERS. MANUAL

r 4“‘1‘

™
e d

—

CHAPTER 1

CORAL LANGUAGE DEFINITION

1.1 CLARIFICATION OF THE OFFICIAL DEFINITION

C1.1.1

1.1.4

T RS
L]

e
.

O W~

1l Units of Compilation

2 Communicators

.3 Transfer of Control between Segments
4 Object Code Limits on Compilation
Unit Sizes '
DECLARATIONS

NUMERIC TYPES

1.1.3.1 Floating Point

1.1.3.2 Fixed Point

1.1.3.3 Integer

PACKED DATA

1.1.4.1 Wordposition and BltpOSltlon

1.1.4.2 Floating Table Elements

1.1.4.3 Results of Partword Table Element Access
OVERLAY DECLARATIONS

1.1.5.1 Restrictions :

1.1.5.2 Overlay of F1oat1ng Varlables
PARTWORDS :

1.1.6.1 Bitposition

1.1.6.2 Floating Varlables

1.1.6.3 Result of Partword Access
LOCATION EXPRESSIONS

WORD-LOGIC

EVALUATION OF EXPRESSIO\S AND CONDITIONS
1.1.9.1 General Algorithm

' Scaling :

Compile Time Arithmetic

Rounding
Order of Evaluatiocn

1.1.9.2

1.1.9.3

1.1.9.4 Overflow Checking
- 1.1.9.5

1.1.9.6

Bap

‘Reference” - 1.

ROYAL AIRCRAFT ESTABLISHMENT

Page 7

0C CORAL COYN] ~ '
920C CORAL COMPILE Version/Date 15/2/15

'USERS ’t\ﬁm\fu.gs | A Author

Various

™

—

™M

[i)
(
—

|

[

r ‘.
SR

1.2
' 1.2.

1.1.14

1.1.15

-

CODE STATEMENTS -
FOR STATEMENT '

-1.1.11.1 For-elements with STEP

1.1.11.2 Entry of DO Loop
PROCEDURES .

LITERALS AND STRINGS'

1.1.13.1 Character Representation
1.1.13.2 Literals '
1.1.13.3 Strings

COMMENTS

1.1.14.1 Comment Sentences :
1.1.14.2 Concatenation of Comments
MACRO FACILITY

1.1.15.1 Macro Definitions
1.1.15.2 Macro Deletions

1.1.15.3 Macro Calls

1.1.15.4 Macro Expansion

1.1.15.5 Recursive Macro Calls
1.1.15.6 Nested Macro Definitions

CORAL LANGUAGE EXTENSIONS

.1
2

l1.2.4

SHIFT OPERATORS

BIT AND BYTE ARRAYS

1.2.2.1 Storage Space

1.2.2.2 Bit and Byte Array Access

1.2.2.3 Presetting of Bit and Byte Arrays
RUNTIME FACILITIES :
1.2.3.1. Multi-level Programs

1.2.3.2 Program Sumcheck

1.2.3.3 1Initialisation of Data Area

120304 Self-Trigmering and Autostart
CONDITIONAL COMPILATION

CORAL SOURCE REPRESENTATION

1
1.3.

.3.1
3.2

LANGUAGE SYMBOLS
CHARACTER CODES -

B o

b

‘ Reference 1
ROYAL AIRCRAFT ESTADBLISHMENT

A S Page 8
820C CORAL COMPILER Version/Date 2
USERS ‘ ?ﬁA?’ﬁ.'UAL - Author L. Grant

r A\
-

—

-

~ CORAL LAL\IGUAGE DEFINITION

The general cla551f1catlon of the language
1mplemented is full CORAL 66 excluding recur51on,
i.e. 1nclud1ng. : »

table handling

bit manipulation

data overlaying

-floating point arithmetic

plus the extra facilities:

bit and byte arrays R 4
left and right shifts

The following description assumes a knowledge of
the Official Definition of CORAL 66 (HMSO).

Section 1.1 describes the implementation dependent
‘features of the -language which includes an
expansion of areas of the Off1c1al Definition
where necessary.

"Section 1.2 describes the extensions to the

language provided by the 920C Compiler.

- Section 1.3 defines the 920C CORAL language

symbols and character codes.

Throughout the following description the bit
numbering for a computer word is as in the Official
Definition, i.e. least significant bit being bit

0 and the most significant bit being bit 17.

LD

"ROYAL AIRCRAFT ESTADLIEHMENT

Reference 1.1

Page 9
2700 CORAL COMPILER Version /Datc 1
USERS -f"”f”ﬂ“ Author L Grant

R

R

oy

S

SR

o

-y

CLARIFICATION OF THE OFFICIAL DEFINITION OF
COQAL 66

- The following description of language features

is simply a set of notes and should be read in
conjunction with the Official Definition from
which there is no deviation or addition unless
otherw1se stated.

‘The following points appear approximatély in

the order of Official Definition.

]

(ETANEY

Refefence 1.1.1

ROYAL AIRCRAFT ESTABLISHRENT

. Page 10O
| ©20C CORAL COMPILER Version /Date 1
USERS MARNUAL o Author L Grant’

(oS

Yoo

r
[

L

1.1.1

l1.1.1.1

1,1.1.1.1

e

UNITS OF COMPILATION AND COMMUNICATORS

{OD 2.2 and 9.1)

~Units of Compilation

The 920C Compiler allows four distinct units of
compilation, thereby allowing separate compilation
of individual sections of a program which are link

loaded by the CORAL Loader prior to execution.
A unit of compilation is structured:

'CORAL" . o | -/

unit - see below ' ' o Q

'PINISH'

and the paper tape must terminate with a halt code.

The unit of compilation can be arbitrarily split
into several paper tapes where each tape except
the last(which terminates with the 'FINISH' key-
word) must terminate with a 'HALT' keyword -

all tapes must have a haltcode as the last
character following the 'HALT' or 'FINISH'.

'The possible units of compilatioh are as follows:

A single program segment

An outermost block of a program may be compiled as
a separate unit for link loading with the
remainder of the program. Reference to Library

- procedures within the segment is indicated by a

Library communicator (1.1.1.2.2) at the head of
the segment. Communication with the outermost
blocks of independently compiled segments is
indicated by a common communicator (1.1.1.2.1) at
the head of the segment. '

The format of a single segment unit of
compilation is:

'CORAL' ‘
_'PROGRAM'programname

Library communicator; (optional)

Common communicator; (optional)
YSEGMENT' segment name

Outermost block constituting segment body
'FINISH!

‘
-)
N cometd’ b et

Arradd.

o

[

[—

RO——

[

int

BAP

. Reference 1.1.1.1.1
ROYAL AIRCRAFT ESTABLISHRENT
Page 11
$20C CORAL COMPILER .
" Version/Date 2

ER L .

1.1.1.1.2

1.1.1.1.3

‘in the Common communicator of a program and

- determine the runtime size of the Common area of

-

See also the example in Appendix E.

A set of program segments -

A set of program segments, which may or may not’
conprise a complete program, may similarly be
compiled as a separate unit. As above, reference
to Library procedures is indicated by a Library
communicator and communication with other
independently compiled segments or with dlfferent
segments in this unit is indicated by a Common
communicator.

The format of a set of segments unit of
compilation is:

'CORAL'

'PROGRAM' programname

Library communicator; (optional)

Common communicator; (optional) .
'SEGMENT' seglname

Outermost block constituting segment body;

,'SEGMENT' segNname
“Outermost block constltutlng segment body -
'FINISH'

A Common segment

This merely contains the information contained
therefore compilation as a separate unit serves
no real purpose since it does not contain any
executable code. A possible use could be to

a program and the positions of items using the

Object Map facility (4.1.4.2) as it may be
loaded by itself,

(EIAVE

ROVAL AIRCRAFT ESTABLISHMENT
Page 12

USERS MANUAL

Reference 1.1.1.1.3

Author L Grant

|

L

1.1.1.1.3
{cont.)

1.1.1.1.4

-‘The format of the Common segment unit of
. compilation is:

'CORAL"
- Common communicator
‘FINISH!

A set of Library procedures

Library procedures are compiled as a special
unit of compilation to be referenced from CORAL
programs thus only requiring each Library
procedure to be compiled once and not each time
it is used. No Common communicator is allowed
(communication is via the parameters of the
procedures only) and the source is in the form
of a number of procedure declarations not
blocks. Several Library procedures may be
compiled within one unit of compilation.

-The format of a set of Library procedures unit
of compilation is:

'CORAL'

'LIBRARY' Libraryname

Library communicator; (optional)

Procedure declaration of library procedure;

L]

Procedure declaration of library procedure
'FINISH'

The inclusion of a Library communicator is
necessary if reference is made from within this
unit to any Library procedure .contained in a
different unit of compilation,

The declaration of a library procedure is
identical to that of any other procedure as
described in OD 8 except that the procedure name
is of the form ‘ »

name/no.

where the no. is any number between 10 and 2000
allocated by the user for identification of the

[

&

bl e

-

[|

T :

|
!

CAP

Reference 1.1.1.1,4
Page 13
"Issue" 3B/4

Author

ROVAL AIRCRAFT ESTABLISHMENT
920C CORAL COMPILER .

USERS MANUAL . -
LT : L. CGrant

)
|
|
|

1.1.1.1.4
{(cont.)

1.1.1.2

©1.1.1.2.1 Common communicators

]

L

procedure. The name alone is used to call the
procedure within a program thereby allowing the
‘user to have several versions of each Library
procedure, as each is updated, and to link load

the required version (the no. and not the name is
used by the 920C CORAL Loader for linking purposes).

~Commiunicators

As mentioned above there are two types of

- communicators., A . -/

This allows communication between the outermost
blocks of a program and between separately
compiied segments whereby objects can be global.
and accessible to each outermosc block. The
structure and contents of the Common communicator
within. individual units of compilation of a

CORAL program must be identical.

The format of a Common commuliicator is:

'COMMON' Commonname
(Commonitemlist)

The Commonitemlist is as defined in OD 9.1. |

The items in a common communicator are of two types,
‘declarations and specifications. The first

- category includes all types of data, and the

‘gecond. includes all 'places' that is procedures,
switches and labels.

1.1.1.2.1.1 Common Declarations

Items declared in common have the same semantic
status in all segments as they would have if

they nad been declared in the outermost block of
those segments, but the data space to which they
refer is allocated in the ccrmmon data area. Thus
it is unnecessary to declare such items within a
"specific segment.

Reference i_1.1,1,4,
~ Page 13-1
"Issue™ 3B/4
USERS. MANUAL - Author L. grant

ROYAL AIRCIIAFT ESTABLISHMENT
- 820C CORAL COMPILER

]

1

—-

-

L

|

L~

L~

1

.

.

L—

1.1.1.2.1.2.

1.1.1.2.2,

Common Specifications

- A common specification contains only enough
‘information about an item to enable it to be
referenced correctly in all segments. It does
_not--create that item, and it is necessary that a

1.1.1.2.1.1.1.. Common Switches

" name, e.g.

" segments, the declaration will be of the form.

" treated exactly the same, semantically, as any

-

full declaration occur in the outermost block of .
one,-and only one, segment of the program. The \
use of procedure and label specifications is N
adequately described in OD 8.3.3., OD 8.3.4., and
OD 9.1 - The use of common switches‘as described
below. B A A SN TS v , _

A common switch item is a specification, and as
such requires only the presence of the switch
j YSWITCH' S1,S2;
specifies two common switches.
When one of these switches, say Sé, is declared
in the outermost block of one of the program
YSWITCH' Ss2 := L1, LZ, L3;

The use of the labels in this declaration is

—

other use of them. Thus if the labels are not
set 'in the outermost blork of the segment containing
the switch declaration, they must be specified in
- common. However, even in this case the conuncn
communicator does not specify any relationship
between the label and the switch. :

Library communicator

This allows reference to:commonly used procadures .,
avoiding recompilation with each program.

i

ROYAL AIRCRAFT ESTABL!SHMENT

(BN

7 - Reference 1,1.1.1.4

Page 13-2.
620C CORAL COMPILER L 3
: ~ "Issue" 3B/4
™]
: ”SiﬂﬁﬂﬁfEEAL : Author 1,. Grant

-

The fo*mat of a lerary communicator is:

'LIBRARY' lerary procedure specifications;

-
-

"LIBRARY' Library procedure specifications

.. The specification of a Library procedure is iden~

tical to that of any other procedure specification
as described in OD 8.3.4 except that the procedure

‘_name is of the form

Name/no.

for the reason described in 1.1.1.1.4.

The further communicators described in

OD 9.3 and 9.4, i.e. EXTERNAL and ABSOCLUTE
‘respectively, do not form part of 920C CORAL
because they serve no purpose since there is no
gencral operating system and it is not possible
to link load programs which have been produced
independently from the Compiler, with 920C

CORAL programs. (Note that [constant] allows
access to a ccre location where 'constant' is the

absolute address).

o

)

' ROYAL AIRCRAFT ESTABLISHMENT

Reference 1,7 . 1. 2

~ , . Page 14
- 820C CORAL COMPILER -
) " Issue” /3/4
1S MIANUAL
USERS ﬁ?ﬁiu-\ Author - L. Grant

3

]

-

-

—

—
|

-

[

L=

.1.1.1.3

-y

Transfer of Control between Segments'

-..of..each segment.

The start of a program is con51dered to be the.

start of the first segment loaded.

The-compller inserts a dynamic stop at the end
Therefore, in order to cause
execution to pass from one segment to another,
the first segment must contain a 'GOTO' statement
to a following segment. The Compiler considers
the 'segmentname' to label the first statement

of a segment which can therefore be referenced

as a normal label ~ for reference between
segments it must be declared in Common.

e.g‘.'
"PROGRAM' X

'COMMON' ('LABEL' SB, ...,.);_
*SEGMENT' SA |
'BEGIN'
|
1.
S |
TGOTO' SB
VEND!
. YSEGMENT' SB
'BEGIN! "
o
| |
'END'
'FINISH!

ROYAL AIRCRAFT ESTABLISHMENT

AT S FTE AR .~ aa &
S20T CORAL COMPILER

Reference 1.1.1.3
Page 15 - _
Version/Date 16/2/76

USERS, M.Am?f“- Author Various

1.1.1.4

If the CORAL source is to be loaded as a -//"

multilevel program (L.2.3.1) a further /
envelope is included around the set of segments
for each level)which is described in (5.4.4).

Object Code Limits on Comgilation,Unit Sizes ,"\\

Due to the object code strategy of absolute
addressing of data, the following limits exist:

(1)

(2)

(3)

(4)

* (5)

A full description of the runtime storage and
object code strategy is provided in Chapter 5.

- program must be <16K and therefore if >8K

compilation unit must be <8K.

The data area generated by 1 CORAL

The executable code generated by 1 CORAL
compilation unit must be <8K.

The data area generated by 1 CORAL program
whether compiled as a whole or in separate
units must be <8K, since it must lie
within module 0. However, core locations
outside module O may be accessed as data
via indexed variables or anonymous
references with large indices.

The executable code generated by 1 CORAL

must be compiled in sections to adhere to

(2).

The data area and executable code generated
by 1 CORAL program must be <16K although
any core locations above 16K may be
accessed via indexed variables with large
indices. ‘ :

* Put see INTsNDED LOADER manual, page 2.

' : A
A ' . . Reference 1.1.2
@5_\? ROYAL AIRCRAFT ESTABLISHMENT ,
M - Page 16 "}
i J_ S20C CORAL COMPILER Versibn/Date 5
r— USERSJ“%HQAL. Author L Grant .
& 1.1.2 DECLARATIONS ' o S . P | -
(1) The scoping rules implemented by the 920C , A
- Compiler are as defined in OD 3 - labels and. -
[variables are not allowed to have the same |
- scope, i.e. a label and an identifier cannot
- have the same name within a block. 1
L (2) The maximum number of declarations allowed b
- ' in a data declaration list is 31, N
1 73
. "3
7
L] |
= ’
. ! T
| !
wnad

] .
L
L f,
[
. -
8§
a
Lo
L)
N
:
|
o

]

]

o Reference 1.1.3
- ROYAL AIRCRAFT ESTABLISHMMENRT . shed
o . Page 17
:26C COR FIPILER o
&20C CORAL COM £ V\?ISIOT\/DG‘(E ‘]6/2/"?6
USERS, FE‘;%‘NUAL Author : Various

1.1.3.1

First Fign Bits 27-10 of mantissa

17
. // Bit 9-0 of | .. Bits 5-0 of
VWOl.d N '/0/1 its 47V Ut Sign
o A N

-y

NUMERIC TYPES (OD 4.1)

There are three types of number, floating point,
fixed point and integer, all of which are used
as defined in OD 4.1. The representation of ‘
these numbers at runtime is described below

(bit O is the most significant bit of a word).

Floating Point

Floating point numbers are held in two words
thereby adhering to the standard Elliott
packed format. The mantissa is held in twenty-

eight bits of the first and second words

including the sign,and the exponent is held in
seven bits of the second word:

17 16 .0

woxrd

16 16 % 0

Second

mantissa | exponent

(Bit 17 is always zero)

The range of a fioating point number is:

-9-2+1018<n0. <49+ 241018

BAP

Reference . 1.1.3.2
ROYAL AIRCRAFY ESTARLISHMENT

_, B Page 18
$20C CORAL COMPILER Version/Date 16/2/76
USERS"MANU’%} Author Yarious

3

JSS—

—

1.1.3.2

1.1.3.3

Fixed Point

Fixed point numbers are held left justified
including the sign, i.e. the position of the

number is 17+18-T0TALBITS , redundant bits are
held as zero:)

18-~ - 17~
: PTotal Total
17 ' - Bits Bits . o
7,74
Fixed number ' _
TB, FB ’ ' 0 - °

The range of a fixed point number is

25Totalbits<18
-10235Fractionbitsg+1023

f

Integer

Integer numbers occupy the full 18 bit word as
normal, i.e. right justified.

17 - S 0

18 bit integer

 Their range is -131072sIs131071.

N.B. An integer ihput in decimal must be in
the range :

-131071<I<131071

But an integer input in octal can be in the
range
400000 85153777778

(-131072) ~ (131071)

| S—

dag i

-

S
—

i

b

i

.

i -

4

| APp——

. i
[A—|

[

¢
| W—

’ '
| FRp—

(BN

. . Reference 1.1.4
ROYAL AIRCRAFT ESTABLISHMENT :

' Page 1°
3 5% APILER '
§20C CORAL COMPILER Version/Date 16/2/76
USERS MANUAL Author Various

1.1.4

l.1.4.1

1.1.4.2

1.1.4.3

1.1.4.3.1

PACKED DATA (OD 4.4)

Wordposition and Bitposition (OD 4.4.2)

The syntax for 'wordposition' allows negative
representation

i.e. Wordposition = Signed-integer

although the Official Definition states explicitly
that Wordposition is to be numbered from zero
upwards. However negative representation is
allowed to increase flexibility in the use of
tables. .

Fleating Table Elements

Floating table elements occupy exactly two words
and the wordposition in the table element
declaration refers to the first.

Results of Partword Table Element Access
(0D 4.4.2.2)

The type of the result of a partword table element
access is the type of the element. spec1f1ed in the
table declaratlon.'

Slgned Integer Partword Table Element
(1.e. Fractionbits not specified)

The result is an integer of width Totalbits and
right justified with the sign extended. Since
integers are held in a full word and right
Justlfled the rebult is actually an 18 bit integer
with'non- s1gn1flcant bits set .to the sign.
Therefore the use of a signed integer partword
table element in an expression is the use of the
resulting 18 bit signed integer. For an example
see 1,1,4,3.5,

ROVAL AIRCRAFY ESTABLISHMENT

. Page 20
$2CC CORAL COMPILER » Version/Date 2
USERS MANUAL " Author

L Grant

F—

Reference 1.1.4.3.2

| SO

b g

ey
v}

[

—
L :

[-—M—A -
L.

Lo

=
| S—

I

L

1.1.4.3.2

‘l.l!4.3lv3

1.1.4.3.4

1.1.4.3.5

-y

Signed Fraction Partword Table Element
{i.e. Fractionbits specified)

The result is a fixed number of the specified

scale of width Totalbits left justified,
including the sign, with non-significant bits
set to zero. Therefore the use of a signed
fraction partword table element in an expression

is the use of the resulting fixed number as if

it had been declared as a whole word element. For
an example see 1.1.4.3.5. ‘

Unsigned'IntEger Partword Table Element
(i.e., 'UNSIGNED' and Fractionbits not specified)

The result is an integer of effectively width
Totalbits, right justified, plus a zero extended
sign, Since integers are held in a full word and
right justified the result is actually an 18 bit
positive integer. Therefore the use of an
unsigned integer partword table element in an
expression is the use of the resulting 18 bit
positive integer., For an example see 1,1.4.3.5,

Unsigned Fraction Partword Table Element
(i.e. '"UNSIGNED' and Fractionbits specified).

The result is a fixed number of the specified
scale of width Totalbits+] left justified up to
a zero sign bit and with non-significant bits
zero. Therefore the use of an unsigned fraction
partword table element in an expression is the
use of the resulting fixed number as if it had
been declared as its equivalént whole word
quantity of Totalbits + 1. For an example see
1.1.4.3.5.

Example of Table Declaration containing Partword
Elements :

'"TABLE' X[1,3]
- [A 'INTEGER' 0; .
B 'UNSIGNED' (4) 1,14;
Cc (14,3)1,0 -
D 'UNSIGNED' (7,0)2,7:
E (6)2,1 1;

'
!
L

j

fod

|

1
(SR

b4

Reference

A
— @&L@ ROYAL AIRCRAFT ESTABLISHMENT 21 1.1.4.3.5
™ _ ' Page
D '920C CORAL COMPILER Version /Date 2
r? AUSER%!%&%?AL Author L Grant
S
r‘T o
M 1.1.4.3.5 o
L} (cont.,) An example of a table entry is:
. 17 16 15 14 131211 1098 76 543 2 10
% woro o |1] 1o 1ol {1 |aloloft|{1lo]ol1 |ofL
M = Y | —
| A
— 1 jlLjojrj1i1 jojrjofojo} 11} 1l1lo41]1 |1
B C

%4 %d | ~
g 2 ' 1e

,91/0}1//10 oo jli{o it jofo]1|1}olC
| D E
L
r .
L The use of each of the partwords B,C,D and E in

an expression is the use of the following whole
) word: .
]
o B : Unsigned integer
?E 17 16 15 1413 1211 1098 765 43 21 O
) ololo|ojololo|ojofo|ofojo]o] 1jofr |1
. C : sSigned fraction
N 17 16 151413 1211109 8 7 .65 4 321 O
. 1{o|1|ofo]ojt|1jrfrjod1jr]1|o|of oo
LJ

|
[

-

Unsigned fraction

17 16 15 1413 1211 10 98 76 5 4 3

o
—
o

Ot1j0 o0} o010} 111 {00 0f0o}OjO |00 }O

Signed integer

17 16 15 1413 1211109 87 65 43 2 1 O

i1 111 1141

=t
|
H
’_l
)._J
|
[
©]
o
| aamd
-2
©]

GL?

A _ Reference
ROVAL AIRCRAFT ESTABLISHRIENT
» Page 22
20C COf VAP i
9 ORAL CONMPILER Version/Date
USERS _Iﬁ’ifaﬂ{gM “Author

1.104-3.6

-2

L Grant

e

[
L

ey
vl

r‘*

0 1.1.4.3.6

-

Restrictions on Partword Table Elements
(1) Ssigned . A
2<Totalbits<18 0 <Bitpositions 16

(2) Unsigned
“lsTotalbits§l7 O<Bitposition<l7

(3) If either (1) or (2) have Fractionbits
specified

-1023sFractionbits<+1023

et

o

v

A

P
E}
FRpm—

E

- u
- 1
kL.‘ Aiindansa &

1
1

L
hoe and

bend

Reference 1.1.5

| ACRAFT ESTABLISHMERNT
i @iﬂ RGYAL AIRCRA ABLIS -~ page 23
: 920C CORAL COMPILER " Version/Date 1
;T USERSTﬁéﬁuéLF Author L Grant
.
M ¢ < ;,‘f
T , : , |
. 1.1.5 OVERLAY DECLARATIONS (4.8)
~1.1.5.1 Restrictions

rw,

[

(2)

(3)

(4)

(1)

Certain restrictions exist on the method and use
of data overlaying due to the structure of the
CORAL language - L .

-

Data declared in a segment can only be overlayed
by other data declared in the same segment, and
data declared in COMMON can only be overlayed
by an overlay declaration in COMMON. Data

declared as an overlay can therefore be preset
in accordance with the usual rules.

Internal procedure parameters may be overlayed

-in accordance with the usual rules but Common

and Library procedure parameters cannot be
overlayed.

The 'Base' of an overlay declaration can be a
formal value parameter of a procedure but for

other types of parameter it has no meaning and
is regarded as illegal.

The 'Base' of an overlay declaration can be an
unindexed array and it is the respon51b111ty of
the CORAL programmer to ensure that it is a
meaningful declaration.

Data'declared as an overlay will not be
overlayed by any succeeding declaratlons.
Thus the declaratlons.

 VINTEGER' I,J;

"OVERLAY' I 'WITH' 'INTEGER' A,B,C;
' INTEGER' K; :

will not cause C to refer to the same location
as any other variable,

L

-

; v , - Reference 1.1.5.2 .
™ @&\JP ROVAL AIRCRAFT ESTABLISHMENT 24 %
Lo ’ ' B Page ‘-5

o $20C CORAL COMPILER Version/Date 1
1 USERS RMANUAL ~ Author L Grant ‘?
! I R
~ ™
L : ot
i 1.1.5.2 Overlay of Floating Variables -
m The effect of overlaying a fixed or integer variable '?
B onto a floating variable is that the overlaying A
variable occupies the same store location as the
P ‘first (most significant) word of the mantissa of the -
o floating variable. R
Ly .) . -
- It must be noted that overlay of a floating variable oy
L onto a fixed variable could produce undesirable side :
L) effects in that the programmer cannot always know ~
» which variable the second word of the floating .
N variable is overlaying and writing to the floating ?
) variable could corrupt the program in an undefined i
way .

= ’ ' 3
. 3
L 2
B 7
A
M o
] |
~) i
r -
i . ~
L. - V‘f
f -
B i
— _4;
1

[

EaE

Reference 1‘. 1.6

RGVAL AIRCRAFT ESTABLISHMENY 25
‘Page
§20C CORAL COMPILER Version/Date
USERS MAHUAL “Author L Grant

l.1.6
l.l.6ll

1.1.6.2

1.1.6.3

-

PART-WORDS (OD 6.1.1.2.2)

Bitposition

The bit numbering is as per the Official
Definition.

Floating Variables

Partwords of floating variables are not allowed. The
desired effect can be obtained by overlaying the
floating variable with two integers and extracting
the required partwords from the integers.

Result of Partword Access

As stated in OD 6.1.1.2.2, the result of a partword
access is an integer of effectively width Totalbits,
right justified, plus a zero extended sign. Since
integers are held in a full word and right djustified
the result is actually an 18 bit positive integer.

17 : ' 0

0 R ¢ Partword value
—— .

Totalbits

Therefore the use of the result of a.partword in
an. expression is the use of the resulting 18 bit
positive integer.

e.g. A 'FIXED' (15, 3)X variable has the bit pattern:

17 - : 6 5-3 2 — 0

11 01 0 0 O 1 1 0 O 10 1 1}jO0 O O

N

" B

Totalbits

'Bits [6,5]1X in an expression results in the use
of the integer-

17 - | - | - o

O ¢ 0 0O 0O 0 0O 06 0 0.0 11 0 01 01

Thi
pa

s

.s analagous to the use of an unsigned integer
rd table element (1.1.4.3.3).

i
LW

H}-‘

Reference 1.1.7
ROVAL AIRCRAFT ESTABLISHMENT

_ Page 26
£2CC CORAL SOMAPILER Version /Date 1
USERS . MANUAL . | Author L Grant

e

e i

bt

e
[,

| S

1.1.7

-

LOCATION EXPRESSION (OD 6.1.1.2.3)

The meaning and use of LOCATION expressions is as
described in OD 6.,1.1.2.3.

Since absolute as opposed to module relative
addressing of data has been chosen as the object code
strategy of the 920C CORAL Compiler, all data
addresses are relative to the start of core. As a
result, the interpretation of both LOCATION and
ANONYMOUS REFERENCE are well defined irrespective of
the parts of the program, and therefore the

positions in core, in which they are used.

With regards to procedure parameters -~ LOCATION of
a LOCATION parameter is LOCATION of the actual
parameter and LOCATION of a VALUE parameter is
LOCATION of the local workspace location within the

‘procedure holding the value (5.2.3.2).

Lot

,
B acacd

R

' Reference 1.1.8
ROYAL AIRCEAFT ESTADLISHMENT
, Page 27
SZGT COBAL CoipILER Version/Date 1
USERS MANUAL Author L Grant

WORD-LOGIC (OD 6.1.2)

Word-logic operators onerate on 1nteger and fixed
901nt typed primaries and the integer results of.

'inner' word logic operations., Word-logic operations
are not allowed on floating point items since they
occupy more than one word. :

1

]

EAE

: - Reference -~ 1,1.9
- ROYAL AIRCRAFT ESTABLISHMENT . _

Page 28
GRAL CORPILED
- 520C CORAL va.».Uw?P%L&:R Version/Date 1
USEAS MANUAL . o author | [Grant

]

~

17

N

——

[

1.1.9.1

EVALUATION OF EXPRESSTIONS AND CONDITIONS
(OD 6.1.3 and 6.2)

" The following description uses the words 'term' and

'factor' as in the Official Definition:

A 'term' is an argument of + or -
A 'factor' is an argument of * or /

General Algorithm

The algorithm used in the evaluation of the
following operations is not, in general, defined
by the Official Definition for: S

(1) Addition, Subtraction
(2) Multiplication, Division
(3) Conditional expressions
(4) Conditions

(5) Untyped primaries

The only defined algorithm is that for the

evaluation of outermost terms where the required

type and scale is known. In these cases the outermost
terms are converted to the required resultant type
before the addition or subtraction is carried out.

- The use of Numbertype in any context causes the
" enclosed expression to be treated as outermost.

An algorithm has been chosen to:

(1) Produce a cdhsisteht‘solution

(2) . Utilise the 920C hardware operations
(3) Maintain maximum possible accuracy

(4) To overcome the fact that in the general
case the types of the arguments of an
- operation and the resultant type may be
undefined by context:

e.g. (a) The argument of + or - are untyped-
' primaries or the result is an untyped-
primary (can be defined by context).

(b). The argument of * or / are'untyped~
primaries; the result may not have a
defined type.

1

(ETAVES

: . ' Reference 1.1.9.1
ROYAL AIRCEAYFT ESTABLISHMENT :
' Page 29
) bac Y o221 ':1\‘ -
SZOC conal COMPUE Vers’on/Date 1
USERS RIANUAL

© Author L Grant

- —
§ P—

—

e

2

ey

[

_]

rﬁ

l'l‘gll
{(cont,)

-

(c) Conditionalexpressions have untyped
Unconditionalexpressions or Expressions.
The required resultant type is always
undefined. :

(d) The Condition may consist of Untyped-
primaries; the resultant type is
always undefined, :

The algorithm is as follows:

(1)

(2)

If the type of an expression is unspecified and
is not deducible from the context then it is
evaluated as floating unless all its terms are
of the same scale or all its factors are integer
in which case it produces a result of the same
scaling. Constants will be considered as having
any scale, i.e., they will take the scale most
suitable for their context.

This is applied to Conditionalexpressions,
Conditions and Untypedprimaries.-

If the type of an expression is specified or
deducible from context then it is evaluated
to that type and care is taken to maintain
maximum accuracy possible,

Thus for addition, subtraction the arguments
are converted to the resultant type before the
operation as for outermost terms. For
multiplication and division the compiler
automatically scales the arguments before or
after the operation to obtain the required
resultant type, if at all possible.

Example:

'BEGIN' : ‘ ‘
'INTEGER' I,J ; (range =-131072 to +131071)
'‘FIXED' (18,17)A,B; (range -1.0 to 0.9999)
'"FIXED' (10,5)X,Y,2; (range =-16.0 to 15.96875)

i}

=0.25; (initial values)
8;
3

A
I
J 2;

BAP

ROYAL AIRCHAFT ESTABLISHMENT

Reference 1.1.5.1

M Page 30
|
L 920C CORAL COMPILER Version/Date 1
M USERS}?AﬁyAL_ : Author L Grant ?
B - ;
- N Sed ‘%
' "
M 1.1.9.1 o ' i
J (cont.) Ll: X:= A+I; (expected result = 8.25) e
M " 12: Bi= I/J; (expected result = 0.25) ™
j L3: Y:= X*B (expected result = 8,25 *
| ' | , ' J
o L4: Z:= (A+I)*I/J; (expected result = same
i 1
N |
. "END! -

ﬁ‘
S

— -

'An explanation of the evaluation is as follows:

Ll:
- L2

 L3£

”L4:

A and I are shifted to type fixed (10,5)

and then added to give the expected result.

I will be divided by J to immediately give

a fixed (18,17) result as required.

X will be multiplied by B to give a fixed
(27,22) result. This will be truncated
at the least significant end to provide a
fixed (10,5) answer correctly. (Fixed
numbers left justified).

Since. (A+I) is untyped and they are both
not integer, each will be floated and a
floating addition executed. It will then
be floated and multiplied to the previous
result and then J will be floated and a
floating division executed. Finally, the
result will be fixed to the scale (10,5)
giving the expected result. :

If the user wishes to avoid these floating

operations he would have to write:-

Z:='FIXED' {10,5) (A+I) * 1/3;

' ' Reference 1.1.9.2
ROVAL AIRCRAFT ESTABLISHMENT ‘ .

Page 31
920C CORAL COMPILER Version /Date 1
USERS RANUAL . Author L Grant

1.1.9.2

Scaling

~Rescaling operations are performed according to the

algorithm in 1.1.9.1:

- (1) For + and - the arguments are rescaled before

the operation and transferred into one of the
forms described in 1.1.3 w1th non-significant
bits removed.

(2) For * the arguments are rescaled after the
operation into one of the forms described in
1.1.3 with non-~-significant bits removed.

" (3) For / the arguments are rescaled before the

operation to a double precision intermediate
form if necessary to prevent loss of
significance or overflow on the division and,
similarly to above, after the operation into
one of the forms described in-1.1.3 with non-
significant bits removed. :

NOTE: Care must be taken in choosing’the scales
of arguments in expressions since the use of
widely differing fixed scales will cause loss
of significance, especially within
multiplication and division operations.

Under the normal algorithm operations involving
multiplication immediately followed by division,
e.g. (a*b)/c, are performed as a*b scaled to single
precision and then divided by c¢. However, in order
to prevent loss of significance, since the result
of the hardware % and the dividend of the hardware /
could both be double precision, a special algorithm
has been incorporated which retains a double
precision intermediate result if a multiplicaticn
is immediately followed by a division and all
arguments, e.g. a,b,c,are of the same scale. If
the arguments are not of the same scale the normal
algorithm is used and the intermediate result is
truncated. '

! Reference 1. l .9.2

m ROYAL AIRCRAFT ES;T‘ABLISHE‘!!ENT .
L _ I o _ - Page 31-1
g20C COTRAL COMPILER " ' '
. "Issue" 3B/4
B USE?SIWANHA Author 1,, Grant
| ' : - :
. ,;{

r 1

_—

-

1.1.9.2.1

Scaling of Conditions

It should be noted that conditions have no
predetermined scale and will therefore, accordiug
to the algorithm of 1.1.9.1, be floated whenever
the two arguments of a relational operator are
not of the same scale. This will often be the
case when the arguments aré not integers, and if
floating-point evaluation is not required then

" explicit typing should be used.

There is no requirement that all operands in a
multiple condition containing the boolean operators
'AND' and 'OR' should be of the same scale. Each
relational expression is processed separately.

-

BAP

Reference
Page 32
Version/Date 1
‘Author

' 1.1.9.3
ROYAL AIRCRAFT ESTABLISHMENT .

8200 CORAL COMPILER

USERSJﬁANQAL

L Grant

1.1.9.3

1.1.9.4

1.1,9.5

1.1.9.5.1

Compile Time Arithmetic

- code:

. and rescaling to floating

- Operations (other than multiplication or division)

on integer and fixed constants are performed at
compile time and the results used in the object

e;g. (6+2) 'RIGHT'X
is computed as:
8 'RIGHT'X

Multiplication and division and floating constant
operations are always performed at runtime.

Overflow Checking

Overflow checking is only performed on floating
operations and the rescaling of a floating value

to a fixed or integer value, since this can be
effected without increasing the size of the object
code due to the method of floatlng point processing
(2.3). :

For all operations on fixed and integer quantities

it is the responsibility
of the CORAL programmer to ensure that the values are
in the correct range, otherwise overflow will occur
without warning.

[

Rounding

On rescallng operations

In order to produce the most eff1c1ent object code
and since the 920C hardware does not round, the
object code generated by the Compiler does not
include any special code for rounding.

LhereFore results of rescaling from flxed to

integer are truncated as follows:

e.g. 2.3—) 2’ 2‘7+ 2
e.g.-‘2°3+-3' _2.7—)'—3

Xey =X
=Xy = (x+1)

P

ETAVEY

‘ ' - Reference 1.,1.9.5.2 '
- ROYAL AIBRCEAFY ESTABLISNPAENT

Page 33
ngpiE e L
920C CORAL COMPILER V_ersnon/Date 1_6/2/76
USERS. F@-ANUAL

Author Various

sl

1.1.9.6

1.1.9.5.2 On DiviSion

The 920C hardware always causes the result of a
division to contain bit 17.set to 1.

i.e. Let the correct result of x/y be z

If result should be: odd even

- > | z oz o+ 1
Y _
-X
= - L =z ' -(z-1)
y : -
However, the 920C Compiler has incorporated an

algorithm to produce the correct result - the
dividend is doubled and the quotient is halved.

It must be noted that in extreme cases this cculd
mean the loss of the sign of the dividend and
therefore produce corrupted results.

No such algorithm is applied to the division of
fixed numbers since bit 17 is rarely significant.

Order of Evaluation .

The tightness of bindihg of oberatiohs is as follows

LEFT and RIGHT (equal)
~ MASK, UNION and DIFFER

* and / (equal)

+ and - (equal)

‘As far as possible expressions are evaluated in the

order which produces optimum object code.

However, as stated in 0D 6.1.3 function calls are
evaluated in the order in which they appear when the
expression is read from left to right so that

possible side eifects caused by interaction between
them can be determined.

_ - ~ Reference 1.1.9.6
ROVAL AIRCRAFT ESTARLIBHMENT o

Page 34
Fad =3
82CC Cuﬁ . COMPILER Version/Cate 1
USEaésﬁﬁwUAL Author - L Grant

I::]'

1

,ﬁk;i

— 1]

]

—
- -

.~ -

C -

I

l1.1.9.6
{cont.)

Therefore, it must be noted that'Whére:
o 'éfb*c . o e .
may be evéluated as:

b*c+a. |
‘fd + fb * fc
is evaluated as:

fa into wsa
fb * fc + wsa

Obviously nested function calls are evaluated in the
reverse order, i.e. fd(fe(ff(x))) causes evaluation
in the order ff, fe and fd. -

It must be noted that the function calls in
expressions containing nested function calls are

- extracted and evaluated before the expressions to

eliminate the overwriting of the parameter space if
calls to the same function are nested.

e.g. fg(fh+l,fg(x,fi+2)+3)
fh is evaluated into wsh
fi is evaluated into wsi

x is evaluated into parameters épace of fg
wSs i+2 1 n 1n " L]

fg is evaluated into wsg , 4

wsh is evaluated into parameter space of fg
wsg+3 L 11 . 1" n . 11} W ou
fg is evaluated

Conditions are also evaluated from left to right

but only as far as is necessary to determine their
truth or falsity. ‘

bomod

fooinsd

4

[——

waSmacadrd

i

H +
| SR

e

Com

i L ' L " Reference 1.1.10
ROYAL AIRCRAFT ESTADLISHMENT ' : : »

. Page 35
OR/ MiPILER o,
920C CORAL COMPILE Version/Date 2
USERS &aANUAL

. : Auﬂmr' L Grant

e ——y

1.1.10 CODE STATEMENTS (OD 7.5)

Instructions enclosed by 'CODE' 'BEGIN' and 'END'
consist of a.subset of SIR, the 920C SYMBOLIC
INPUT ROUTINE, and a general knowledge of this is
assumed. Code instructions are terminated by -
semicolons and their elements are separated by
commas to conform with normal CORAL statements,
otherwise there are no restrictions on the format.

" No CORAL declarations or statements are allowed
within a CODE statement other than comments. A

- code statement can only be used in the p051t10n of
a CORAL statement.

The general form of an instruction in a code
statement is:

LABEL: /F, ADDRESS;
where:
LABEL: Normal Label which is accessed within

(optional) the code statement or within the CORAL
source enveloping it.

Modification Bit

(optional) -
F Standard 920C function code, i.e. 0-15
ADDRESS (1) Identifier - either

The name of an actual or formal by
value variable which is declared
within the CORAL source enveloping
the statement. (It cannot be the
name of a formal by location
variable). ’

or

The name of.a label declared within
the code statement or within the
CORAL source enveloping it.(F=7/8/9)

(2) Unsigned integer constént 3
_ - The absolute address of the location
.. to be referenced by this instruction.!

.) Reference 1.1.10
AOVAL AIRCRAFT ESTABLISHMENT -

GAR -
7 E‘g v . Page 36 !
¢ : 20T CORAL COMPILER . ~
‘ : B20C CORAL Comamit Version /Date 2
o USERS MANUﬁ}. Author’ L Grant i
L . L3
- bit
| !
| 3
i 1.1.10 - | B
J (cont.) - (3) Ssigned constant , ‘ <
- A constant to be referenced and held .
] in the object code as: ?
L (a) A normal INTEGER if written as 3
an integer, e.g.+1234
M (b) A FIXED(18,17) number if written e
Dl o as a fraction, e.g.++1234 E
: . No other types of constant are
e allowed. .
L] 4 |
The validity of a code statement is the e
‘ responsibility of the programmer - The Compiler _
. provides only a limited number of error checks '
- (3.1) to allow maximum flexibility. Special care -
- must be taken over the use of the H-register which is
o assumed to be in absolute addressing: mode on entry to
- and exit from a code statement,
Tl The syntax of a code statement is presented in -
L Appendix A,
;(')
|
[-
i
i
i :
[
)
M
\ } '

PN]

G

S

. ' - Reference 1.1.11
ROYVAL AIRCRAFT ESTABLISHMONT

‘Page 37
ol § AG P \ . U ~ f=
820C CORAL COMPILER Version /Date 15/2/76
USERS;ﬁﬁﬁyﬁL : - Author Various

N S

S 1.1.11

1.1.11.1

 The seqguence-of operatlons is as follows:

1,1.11.2

- (11) The second expression e2 is evaluated to

FOR STATEMENT (OD 7.10)

For-elements with STEP (7.10.1)

The Official Definition was in fact in error when the 920C CO AL
Compiler was written (although later issues of the 0.D. have
been corrected); so the following definition was useds

Let the element be denoted by
. CV:i= el 'STEP' e2 'UNTIL' e3

In contrast with Algol 60. the expressions. are
evaluated once onlv., . ’ '

(i) The first expression el is evaluated and
assigned to the control variable,

the scale and type of the control variable
and stored in the anonymous location v2.

(iii) The third expression.e3 is evaluated to
~ the scale and type of the control variable
‘and stored in the anonymous location v3.

Adiv) The value of the control variable cv is
compared with the limit wvalue v3, if
(cv-v3)*v2>0 then the for elewent is
exhausted, otherwise

(v) The controlled statement is executed.

(vi) The increment v2 is added to the control
variable and the cycle reépeated from (iv).

Note that if the control variable is subscripted
then the subscript will have been evaluated and
the LOCATION of the controlled variable held in V1.

The control variable is allowed to be INTEGER, FIXED

or FLOATING, and to be a member of an array, but not

to be a partword. It is recommended that only simple
integer control variables be used.

Entry of DO Loop

The language allows a GOTO statement to transfer control
into the controlled statement of 2 FOR statement. It
nust be recognised that this is dangerous since the
control variabkle may be undefined.

.

(BN

ROYAL AIRCRAFT ESTABLISHRENTY

' Reference 1.1.12

~ Page 38
RBIYLS” O AL F"ﬂ'&ﬂipaLE‘ : N . -

ERS’“ANUAL . Author L Grant

1.1.12

-

PROCEDURES (OD 8)

(1)

(2)

(3)

(4)

(5)

"Procedures are declared and called as defined in
oD 8.

The following points should be noted:
Answer Statement (OD 8.1)

The answer statement of a typed procedure
cannot be embedded in a nested procedure.

More than one answer statement may exist in

.a typed procedure and it is also possible to

exit without executing an answer statement by
jumping to the end.

Dimensions of Formal Arrays (OD 8.3.2.2)

If the Compiler encounters uses of a formal
array which attribute to that array
conflicting dimensionality an error messaqge
will be output ho 131) ’ '

‘Non-standard Parameter Specification (OD 8.3.5)

This facility is not allowed.
Number of Parameters

The maximum of 30 procedure parameters are
allowed.

Scales of Fixed Parameters

The scales of fixed parameters are not checked
for a match between the specification and

‘declaration of the same procedure.

CAP

» Reference 1.1.13
ROYAL AIRCRAFT ESTABLISHMENT -
Page 39
?‘ 5" [bt a&.E'z% . ¥
S20C CORAL CoMP Version/Date <
USERSFIANUAL

Author L Grant

™

1.1.13
l.l.l3.l

1.1.13.2

1.1.13.3

- character is held in 1ts equlvalent upper case

-then it is assumed to be 1). The full set of

LITERALS AND STRINGS (OD 10.3 and 10. 4)

Character Representation

In both literals and strings characters are held
in 7 bit ISO code form, i.e. the external ASCIT
(1.3.2) code minus the parity bit. Any lower case

form.
Literals

Literals mag be any legal CORAL character (1.3.1). The
method of obtaining other characters u51ng the !
facility is described in 1.1.13.3.

Strings

A string is delimited by the 'quotes' #4< ¢ >%

and can contain any ASCIT printing and layout
character. The quotes cannot be nested within a
string (unless it is a macro definition - 1,1.15.1).
Printing characters are stored within strings but
layout characters are ignored. In order to get
layout characters stored they can be represented by
an identifier, optionally followed by an integer,
within exclamation marks. For example, !L5! within
a string will be interpreted as five consecutive

linefeed characters. (If the integer is omitted

identifiers is:

S space (Normal spaces between words are included
without having to use the !Sx! facility)

carriage return
line feed-
form feed

Horizontal Tah
haltcode

nHEa"r0

X followed by a decimal character representation
indicates the external representation of a character,
that is, the value of the tape code that would be
output if the string were punched out. The maximum
number of characters allowed in a string is 630.

As stated in the OD 10.4 a string is classed as an
unconditional expressicn and its value is its

~address. Using this address the string characters

may be accessed. The runtime format of a string is:

(ETAVEY

ROYAL AIRCRAFY EST&SL%IESHMENT

920C CORAL COMPILER

Reference
" Page 40

Version/Date 2

i

USERS MANUAL Author
:
1.1.13.3
(cont.)
0 Absolute address of 1
9 17 I079 T 0
. No.words,n-1 No.string chars
v 17 11} 10 41 3 0
2 Char 1 Char 2 Char 3 Shfrg
3' 17 15} 14 gl 7 1V]
Char3 Char 4 Char 5
4 -
Chars
5 6-10.
¥ |
t
|
! 1
{
. 1
| i
'
n-1 o
n

The contents of word O is accessed when
a string is used, i.e. the value of a

string is the address of word 1.

G} : ' | ‘ Reference 1.1.14
@ E) ROYAL AIRCRAFT ESTARLISHMENT .]

M Page 41
Do Bipdeled .CC??U’AL_ CoHAPILER Versioﬁ/Da‘ie '1
—) USERS MANUAL Author L Grant
~ -
] 1.1.14 COMMENTS (0D 11.1) |
1l.1.14.1 Comment Sentences (OD 11.1.1)

[

A comment sentence may be written wherever it is
convenient, i.e, between CORAL symbols, and not

= _ just wherever a declaration or statement can appear.
1 ‘ Therefore comment sentences may precede the ouuer—'
‘ ' most block of a segment,

1.1.14.2 Concatenation of Comments

The concatenation of comments in the following way:
COMMENT ;!)

- _ is legal.

‘ ——
[S—

-
|

-

]

BAP

' : Reference 1.1.15
ROYAL AIRCHAFT ESTABLISHMENT .

‘Page 42
S20C Conal COMPILER VersiOﬂ/Date 1
_USEﬂ§fﬁA?UAL : Author L Grant

)

o

—1 ,_v.
RIS

JR—

]

1

ll

l.

1.15

1.1.15.1

.1.15.2

1.15.3

-y

MACRO FACILITY (OD 11.2)

Macro Definitions

A macro definition is delimited by the guotes .

+< and >+ which may be nested. Any ASCIT
character (1.3.2) may exist in a macro definition
and layout characters are significant.

With the exception of the circumstances described

in 1.1.15.4, macro definitions may occur in any
suitable position in the CORAL source (like comment
sentences). It must be noted that the scope of a
macro definition does not follow the block structure
but ‘is always active until it is deleted.

Macro Deletioné

With the exception of the circumstances described in
1.1.15.4, macro deletions may occur anywhere.

Macro Calls

OD 11.2.2 states that the actual parameters to a

"macro call should be treated as strings of characters,

which are used to set up a 'virtual' macro body of
which the corresponding formal parameter is the name.
The analysis of an actual parameter as a string of
characters, however, poses a number of problems, since
the string delimitter (the comma or right parenthesis)
can occur. in a number of positions within the string
as well. An example of such a situation is

CALLMAC ((,*< CHARS)>+'COMMENT' THIS Is ONE,
OR MORE, PARAMMTERS' (POSSIBLY THREE),

(CHARS [MORECHARS)])

it- has therefore been decided.that'only legal CORAL
symbols should be permitted as actual parameters, and
that the rules for their use should be as follows:-

(1) Only legal Symbols are permitted.
(2) Comment sentences and strings are regarded as

single symbols and the occurrence of parameter
delimitters within them is not recognised.

N T W

b

b

A ;
| N—

i

A . ' - Reference 1.1.15.3
. ROYAL AIRCRAFT ESTABLISHPAENT : L
, o ' Page 43 '

Version /Date 1
Author’ L Grant

20C CORAL COMPILER
USERS MARNUAL

1.1.15.3 (3) The construction 'LITERAL' (C), where C is
(Contd) ' any single character, is treated as a single
- symbol. It follows from this that at any
point in the source 'LITERAL' (C) is also
regarded as a single symbol, and that the
entity between the brackets cannot be a macro
call. ‘ :

(4) Nested round and square brackets are not
" independent of each other. Thus [(CHARS])
is not regarded as a legal parameter.

(5) The characters comprising the symbols of
actual parameters are stored as read. Identifiers
that are macro names are not expanded, and macro
directives ('DEFINE' and 'DELETE') are not
recognised. »

1.1.15.4 Macro Expansion

The process of setting up a macro expansion involves
Creating virtual macro definitions, which, for the-
duration of the expansion, can be regarded as having
the same status as macros defined by the use of the
'DEFINE' directive. This gives rise to a number of
restrictions on the use of parameters. The rules

- governing what may occur within a macro body are
listed below. It should be noted that the error
situations <that can arise are trapped at the point
of expansion, not definition.

(1) A formal parameter to the current macro may have
~ the same name as a previously defined macro.
While the current macro is being expanded the
previous definition of the ‘parameter is.
inaccessible, but it is restored when the
expansion terminates.

(2) It is not possible to define or delete a name the
) current meaning of which is a macro parameter
of a macro currently being expanded.

(3) It is not possible to delete or redefine a name
' ~which is the name of a macro currently being
expanded.

T

: . Reference 1.1.15.4
ROVAL AIRCRAFT ESTABLISHMENT - o

Page 44

; Version/Date 1
USEﬁsrﬁAﬁgAL : - . Author L Grant

8200 CORAL COMPILER

-

\,.-Qel? 4

a—

-

|

1.1.15.4 (4) A macro, A, may contain a definition of

(Contd) another macro, B. If so, the definition of
' ‘] becomes active when A is called, and remains
"active after the expansion of A terminates.

(5) If one macro calls another, their formal
parameters may not have the same names.

(6) If a macro, A, contains a definition of another

' macro, B, then the names of the formal parameters
of A and B may be the same provided that A
does not also contain a call of B.

1.1.15.5 Recursive Macro Calls

Recursive macro calls are not trapped where they occur
because under eertain circumstances it is permissible
to have a macro undergoing more than one level of
expansion at once. This situation occurs when a macro
has as one of its parameters a call to itself.

Since expansion of the parameter occurs at the point
where it is used, and this is within the expansion

of the outer macro, the situation is apparently
identical to a genuine recursive macro call. However,
a recursive call will rapidly exhaust the core
available, and it is considered that this is a
sufficient error indication.

1.1.15.6 Nested Macro Definitions

A nested macro definition, as for an outer macro
definition, is valid-from the point of definition
until either the end of the program text is reached
or the macro name is redefined, or deleted.

OD 11.2.4 states that if a redefined macro is deleted,
it is the most recent definition which is deleted,

and the previous one is reinstated, where 'recent'

and 'previous' refer to the sequence of the written
text of the program. However, if the redefinition

of a macro is nested within a macro which is not
called_before the deletion of the initial macro,

‘the terms 'recent' and 'previous' have the opposite
meaning. '

1

LI

T

K]

TR I S

. .
Apusmin A

i
i

v
ent e,

b

b

A\ v - : _Réference 1.1.15.6

— . ROYAL AIRCRAFT ESTABLISHMAMENT o 5 .
8 : ' ~ Page 4

j 820C CONAL COMPILER . ,

- Version/Date 1
ER e .

. USERS Pl&fw‘@f& Author © L Grant

|

- ;‘2
B 1.1.15.6 e.g. “'DEFINE' A 4<———=m——=eo>4; (%)
(Contd) '

1 'DEFINE' B A<mm=m=m———- 'DEFINE'A=mmmmm—m >4;

| 'DELETE' A; (Causes * to be deleted)
M

|
W Note that for the most efficient use of Compiler
L data space. macros should be deleted in reverse

order to their definitions.

™M
;’;"1
L
[
L]
B
(]

J

' - ‘Reference
ROYAL AIRCRAFT ESTABLISHRMENT . 46
‘ - Page
S0 [yt ik
§20C CORAL COIGPILER Version /Date
USERS NiANUAL Author

1.2

1
L, Grant

1.2

CORAL LANGUAGE EXTENSIONS

This section describes the extra language

- facilities allowed by the 920C CORAL Compiler.

]

EIAYEY

. Reference 1.2.1
Page 47 '
~ Version/Date 2

 ROVAL AIRCRAFT ESTABLISHMENT

820C CORAL CGJ" LER
USERS ‘MAN’UAL

'Auﬂmf I, Grant

]

- 1.2.1

LY
ot
-

SHIFT OPERATORS

The operators 'RIGHT' and 'LEFT' are provided to
allow specification of right and left shift

~operations. The results of the shift operations

are similar to the standard 920C shift instructions:

RIGHT: Arithmetic right shift (sign regeneration)
~ : without rounding,

LEFT : Logical left shift with non—51gn1f1cant
bits cleared,

A shift operation is written:
x 'RIGHT' y
where

x is an integer or fixed point typed primary (shifts
on floating items are not allowed).

y is an expression whose value at runtime must be
-36<y<36 - - outside this range the shifts will
have undefined effects due to the hardware.

y is rescaled to type INTEGER if not already of that
type but x is never rescaled before the operation.
The result of a shift operationis the resulting bit

pattern considered to have type INTEGER.

Shift operators have tightér binding power than the
Boolean operators UNION, MASK and DIFFER.

The syntax of the shift operators is descrlbed in
Appendix A.

Note: Since 'LEFT' includes a mask to clear
redundant bits from the Q but 'RIGHT' does not
(see 5,4,1.3)

A 'LEFT' B _
and .~ A 'RIGHT'C where C = ~B

will not necessarily produce the same result since

redundant bits from Q will not be cleared in the
latter case. It is recommended that only shifts by

.positive powers of two are performed or alternatively

a "MASK' operation is attached to the shift.

o

b

o

fod

v
T

B

(EIAVF

ROVAL AIRCRAFT ESTABLISHMENT

920C CONAL COMPILER
USERS MANUAL

Reference

- Page 48
- Version /Date

Author

1.2.2

o)
e

L Grant_

]

S 1

1

Y_7

r__,A

{_'4‘ —

—

1

1.2.2

1.2.2.1

BIT AND BYTE ARRAYS

e
o

-

A ‘facility is provided for deflnlng arrays of
elements of less than a full word in length - these
elements may be either a single bit or a byte
consisting of nine bits.

Bit and byte arrays can be used in the same way as any

other data array (OD 4.3) where the word ARRAY is
preceded by BIT or BYTE on the declaration.

The syntax is presented in Appendix A.

Storage Space

Consecutlve BIT and BYTE ARRAY declaratlons are
not closely packed and each array starts on a word
boundary (see below).

(1)

e.g,

17 16

BIT ARRAY

Storage space for a BIT ARRAY begins on a word

boundary with sixteen bits per word,

‘justified in bits 15-0 and it assumes element
O lies in bit 15 of the first word

be conceptual).

BIT ARRAY A([23:41]

.15 14 13 12 11 10 9

8

7

6

occupies two words:

5 4 3

right

2

(which may

O

oi/o' /o/ 0

4

/

/1

ST

O//b

7/

23

24

25

26127128

29

w

/6//// 32133

34

35

36

98]

7138

39

40

41

" N/

v/

6/6’4/

°/ A

SO
N N

: 3 Reference 1.2.2.1
ROVAL AIRCRAFT ESTABLISHMENT | :
Page 49
a any, '
20€ con AL COMNPILER Version/Date 2 .
USERS'WARUAL Author L Grant

|
L

C -

1.2.2.1

1.2.2.2

1.2.2.

(cont.)

W

(2) BYTE ARRAY

Storage space for a BYTE ARRAY begins on a
word boundary with two nine-bit bytes per
word and it assumes element O lies in bits
17-9 of the first word (Wthh may be
conceptlonal).

>he.g. BYTE ARRAY A[3:6]hoccupies three words:

17 16 1514 1312 1110 9 8 7 6 4

>

3 2
olololololo]ololoV A /)/ /3”//////

yava

ol o

5 1
| 4 /
ALY NAAN Y VAN

o NI\ |°

ALV ANAAD

Bit and Byte Arrayv Access

The result of a bit or byte array element access is
the positive INTEGER wheole word with the bit/byte
at the least significant end, i.e. bit O or bits
8-0 respectively. This corresponds to the part-
word access of an equivalent number of hits
(1.1.6.3).
be used as a partword reference
on the left-hand side of an assignment) or as a
typed primary with an integer value. The use of

~bit and byte arrays is inefficient compared with 1"h
use of whole word arrays (5.4.1.1).

Presetting of Bit and Byte Arrays

Both bit and byte arrays are preset by whole word
integer constants which hold the values of the 16
bits or 2 bytes for the word which is being preset.

A bit/byte array reference can therefore
(an integer variable

Bpe

P

N | Ve

I—

-

: Lb—‘ e

S.‘:-u-—.a,)f envmnd

b i

s
| PO

[R——

]

GAP

ROVAL AIRCRAFT CESTABLISHMENT

. §20C CORAL COMPILER
USERS MARUAL

- Reference
Page 50
Version/Date
Author

1.2.2.3

~

-~

L Grant

1.2.2.3
(cont.)

e.g.'BIT'"ARRAY'A[

17 16 15 14 13 12 11 10 9

4:40] :='OCTAL' (005252),
TOCTAL' (125252) , 'OCTAL' (125200) ;

8 7 6 5 4 3 2 1
é//g//g/4%/4a/%y 1loj1o | 1jo]l1lol1]|o]|1
q//é/ 1lo|1 jofr]ofr}jo| 1lo|1lo]1]o]2
. VST
o toJ1fo |1 joj1jo|1fo] 1 0

A2/ /O/O//O/,O/O/

EBAP

Rﬁéemm 1.2.3

ROYAL AIRCRAFT ESTABLISHMENT 51 -

‘Page
Version/Date 1
Author - 1, Grant

$20C CORAL COIAPILER
USERS MAHUAL

1.2.3

1.2.3.1

1.2.3.1.1

by the 920C CORAL Compiler.

- conditional compilation facility (1.2.4) may be used

.code is generated by the Compiler.

-segment must 'GOTO' the first. ('GOTO' first segment

-y

RUNTIME FACILITIES

This section describes the runtime facilities pfovided
It must be noted that no runtime dlagnostlc checklng
or tracing facilities are provided although the

to incorporate optional user diagnostics.

Multi~level Programs

A facility is provided for compiling multi-level
programs where the interrupt handllng housekeeplng

The operating instructions for loading and executing a
multi-level program are provided in 3.1.5.1.

A CORAL program may be split into segments which run

on different levels, a minimum of one segment per level,
and all levels must be present. As for a normal
program the same Common communicator must accompany

each unit of compilation and is therefore shared between
levels. The level upon which a segment resides is not
fixed until loading, and each segment should be written
as a normal segment - the segments of each level must .
be chained into a loop by making each segment terminate
with a 'GOTO' nextsegname;' (1.1.1.3) and the last

name; causes a level terminate and on interrupt
processing is resumed at the first segment. 'First!
refers to the order of loading and for clarification
of this with regards to compilation refer to 2.1.5.3).
The Loader embeds the segments into the interrupt
handling housekeeping code and no knowledge of this is
required by the user. (For information it is described
in 5.4.4). A multi-level program can therefore be
written in pure CORAL with no provision for interrupt
handling code other than segmenting the prcgram
accordlng to its levels of execution.

CORAL Code, i.e. Common procedures, should not be shared
between levels since 920C code is not re-entrant, and it
is the responsibility of the user to ensure that this
does not happen -- no checks are performed by the

Compiler. (The user need nct maintain four copies cf
Librarv nrocedures, one for each level, since the Loader
will regenerate them as reguired). Similarly, care

s

Reference 1.2.3.1 .1
. Page 52 '
920¢C coRal Q%E%%P!LER ' Version/Date 16/2/76
USERS MARNUAL . : Author | Verious

3

ROYAL AIRCRAFT ESTAB%..%SHR@EM"T

™

l1.2.3.1.1
(contd)

152.301.2

b, A

must be taken in updating Comnmon data which is
shared between levels.

The following information is proVided for use in
specialised circumstances - it has no effect on the
object program and can be ignored if not required.

It is sometimes useful to distinguish between the
reasons for entering a program at level 1:

(1) 1Initial start of a program after loading.

(2) Re-entry via AUTOSTART after power has been
switched off and on? note that this does cause
the program to be re-entered at its Start, HOT a
where it was when the power went offj because
920C hardware does not provide the "power fail
interrupt" needed %o implenent the latiex.

(3) A top level intérrupt.

For this purpose a flag, TOP LEVEL INDICATOR, has

_ been supplied by the Compiler which will automatically

contain the following values according to the above
conditions: ;

+0 Initial start on level 1
~1 AUTOSTART
+1 Top level interrupt

The position of this flag within the object code is :
Module O lower bound + 4.

Tt is therefore necessary for the user to define
the macro

' DEFINE! TOPLEVELINDT<zbsolute address of MCL + 4 >V ;

in order that the flag may be accessed mnemonically
within the CORAL program. The module O lower bound
is either the default value or the value specified
by the user on loading (2.1.5.2). -

For clarification of the routine storage of a CORAL
"program see 5.1.

Reference 1.2.3.2
Page 53)
Version/Date 1

ROYAL AIRCRAFT ESTABLISHMENT
820C CORAL COMDILER

USERS MANUAL

Author 'L Grant

[
L

1.2,3.2

" The 920C CORAL Loader calculates the'runtime sumcheck

lDol

Program Sumcheck

of the executable code of a CORAL program and stores
it in the object program for runtime sumchecking
within the user program. It has no effect on the
object program and can be ignored if not required.
The sumcheck together with the program code bounds
are provided in the six locations from the module O
upper bound (2.1.2. 4) downwards :

MOU Module 1 code area upper bound (=M1U)
MOU-~1 Module 1 code area lower bound
MOU-2 Module O code area upper bound (=MOU)
- MOU-3 Module O code area lower bound
- MOU-4 -1 :
MOU-5 -sumcheck

The sumcheck is the negated accumulation, ignoring
overflew, of the contents of each word between the
upper and lower code bounds in each module and it is
accumulated as the program is loaded. The data area
of a program is not included in the sumcheck since
it contains an inseparable mixture of fixed preset
and variable non-preset data.

The following program should be used for the runtime
sumcheck: -~

'BEGIN' 'INTEGER!' SUM, ADDRESS POINTER, WORD POINTER;
SUM :=0; .

'FOR' ADDRESS. POINTER := HIGHEST,

ADDRESS POINTER - 2 'WHILE'[ADDRESS POINTER] 'GE' O
lDol . .

'FOR' WORD POINTER:=[ADDRESS POINTER - 1]

'STEP' 1 'UNTIL' [ADDRESS POINTER]

SUM :=SUM + [WORD POINTER];

"IF' SUM = O

'THEN' sumcheck ok

'ELSE' sumcheck fail;

'END!

bnid

e

e

toon.d

B A . ’ " Reference 1.2.3.2
ROVAL AIRCRAFT ESTABLISHWENT .

] Page 54
| S20C CORAL COMPILEY . |
. Version/Date 16/2/76
r USERS MANUAL - Author Various
.]
= BT
- _
E
r . .
i 1.2,.3.2 : ‘ v
s (cont.) Where HIGHEST should be declared amongst the system
‘ macro = - '
a :
| '"DEFINE' HIGHEST+< absolute address of MOU>t
e For clarification of the runtime storage allocation
Q} of a CORAL program see 5.1,
(} Tote that 3ikds Suncheck facility has been desizned
- in such a way that, should a loader pecoie available
which loaded above 16X or into more than 2 code areas,
] NO change would be needed to the Sumcheck Frogram.
| .
0]
i
L) .
. £ i) 3 : ‘
B 1.2.3.3 Initialisation of Data Area
L
‘ ‘Before loading the CORAL Loader sets the data area
[] to be occupied by the CORAL unit of compilation to
i .
L] 28Y0. However the Extended lLoader does not.
. It is therefore recommended that any areas
r requiring initial values are either preset or are explicitly
| assigned %o .at the start of the user's program. Remamber
- o N . - PR . . .
that precets are only sety, and the sbove initislisstion is
~only perfoxrmed, when the program is first loaded:
(: .to ensure that a program can be restarted without reloading
Ll

~initial values needed by assignments.

it, locations used for variables should be given any

L€ Sonall I CY AN Ry
POTABLISHMNERT

Raterence 1.2,.3.4

\ . Version /Date 16/2/76
- Author T.7.Frogzatt
fﬁ > -
L 1.2.3.4
o |
i : The ¢20C CO“ML Loader provides the 1°0170wzr1r7’ two facilities
o which are usually required of a real-time progrem;
— especially when the program is to be used in an p,lication
B environnent, without the normal 920C Control Conaolezc
s
* Self-Trigrering, A Loader option is provided, whereby,
r when the user's progrem has been successfully loaded,
| | it starts immediztely.
- #* Autostart The multi-level housekeeping code (1.2.3.71.1),
ji includes the code required to mzke a program restart
o automatically after a power failure & restoraticn.
{] 4 urtl detect & distinguish these
L ! event
1
W !
‘] i
= There are 2 limitations on the wuse of the Autostart
acilitys-
1
Ll * To use the Autostart fecility it is necessary to load 1
even single-level prozroms in the multi-level mode of
B the Loader, so that the housekeeping code is insexrted,
= ¥ The hous i
- prnérfu T !
i afier a :
L contrel i i
, executed !
B) some other
L using & 38 '
f
] Thus it is the sutostar i
Lj facility (id written in CCRAI 50 &% Lo elfo
be el f-X
[l ?
if In those instances where it is undesiresble to run the %
- has just been lozied; for example because !
o ing it he) ectsd 3
o phe © ;
= i g1f '
1 i
Sod ‘
- {
!
There is no intrinsic reason on the 920C why either a ;
— program using tart s e muldi-level, or that :
the use of e he Autostort facility %
sheuld he e thege are due to the {
C | 920C CORAL implementation. :
prograns will be i
nring S8l f- Autostart, and the !

gingle-~level and

(e gt

Mmuorluj of off-line pr

. [[T AT 2 PN R

[-

: ' Reference 1.2.4
ROVAL AIRCRAFT ESTADLISHMENT 55
: Page
] %) A B [ad% .
§20C Cﬁa«fﬁqL COMPILER _Vers:on/Date 1
USERSiﬁ%NUAL " Author I Gfant
K3

1'2.4

" A facility for allowin

R

CONDITIONAL COMPILATION

statements is provided.
Under conditional compil
the Compiler will compil
source which appears bet

g optiohai_cdmpilation of

ation mode of operation
€ any statement in the
ween -the characters % .and :

as a normal statement., Under normal mode of

operation the Compiler

will treat such a statement

as a comment, With this facility the user may

insert trace gi
be used during develo

compilation.
€.g. A:=B;
%PRINTVALUE(A);
C:=D;

Conditional Compilation:
B is assigned to A
The value of A is printed
D is assigned to C

rectives in the source program to
pment and ignored when the
program is working,simply by altering its mode of

-

Normal Compilation:
B is assigned to 2
D is assigned to C

I

N

n e Reference 1.3
— @L/_RSI? ROYAL AIRCRAFY ESTABLISHMENT 6
B Page >
L G20C CORAL COMPILER .
. “ Ak Lo " Version/Date 1
\ E : - :
[USERS MAEUA?}_’ Author L Grant
I .
~— N E?‘
- '
. 1.3 CORAL SOURCE REPRESENTATION
) This section describes the CORAL language symbols
i and physical character codes to be used in a
i CORAL program.
L
|
=
L
J
L
N
i

cy .
% 23

]

’ ' § Reference 1.3.1
ROYAL AIRCRAFT ESTABLISHRMENT 57
‘ ' ‘ ‘Page
c \L CON »
§20 CQR&L CG ﬁPiLER’ Vers:on/Date 2
: JTLA
USERS'ﬁéquF Author - L Grant

o~

fa—

LANGUAGE SYMBOLS

The full list of language symbols available in
920C CORAL is given below.
substantially the same as that given in APPENDIX 2
of the Official Definition.

AND
ANSWER
ARRAY
BEGIN
BIT
BITS
BYTE
CODE
COMMENT

- COMMON

CORAL
DEFINE
DELETE
DIFFER
DO

END
ELSE
EQ

'FINISH
digits O to 9

upper case letters A to 2

+ - % /
< £ = 2
()

13
B

<+

o

Language symbols that appear as words are delimited
by acutes (single apostrophe), for example 'BEGIN',

FIXED
FLOATING
FOR

GE

GOTO

GT

HALT

IF

INTEGER
LABEL
LE

LEFT

LT
LIBRARY

LITERAL
"LOCATION

MASK
NE
OCTAL

L
-
-

This 1list is

OVERLAY
PRESET
PROCEDURE
PROGRAM
RIGHT
SEGMENT
STEP o
SWITCH
TABLE
THEN
UNION
UNSIGNED

- UNTIL

VALUE
WHILE
WITH

arithmetic operators

comparators

expression brackets

index brackets

string guotes

assignment symbol

subscript 10

Layout characters.

and they cannot be abbrieviated.

fed ‘,;.-J

T 3

A b

EL""

aw

-t

- i 5 * Reference 1.3.1
. ROYAL AIRCRAFT ESTABLISHMENT

’ 820C CORAL CORAPILER ' g
_ an ?cv‘ LE Version/Date 1
o ‘ ! :
i (USERS MANUAL Author L Grant

T
f__’; ~ p,e‘, H
M
L 1.3.1 |
(cont.) The following representations for non-alphanumeric
: language symbols are used:

-

Oofficial | " - Alternative

Definition Representation’. Representation
< < ‘LT
< <= 'LE!
- = 'EQ'
2 >= 'GE"'
> > 'GT!
<> : ‘NE!
< “ HE
4 § e : :

} >4
to 1]+ &

In procéssing CORAL source text, including code
blocks, all layout characters are ignored and lower
case letters are read as upper case. . (Within the

Méc;o Pass lower case -letters are interpreted as
upper case with regards to analysis but they are
output as lower cdase in the expended source).
Their use as literals and within a string -is
described in 1.1.13 and within macro definitions
in 1.1.15. :

ke

]

e

@ﬁ\ j;@ ROYAL AIRCRAFT ESTAEL.E SHAMENT | Reference - 1.3.2
lad . ' page 59 o 62

820C CORAL CORIPILER

Version/Date 16/2/76
USERS MANUAL

Author Various

]

]

1.3.2 CHARACTER CODES

The character code accepted by the Compiler is

ISO or ASGII -code with even parity in the eigth track.
fleference must be made to 1.3.1, 1.1.13 and 1.1.15
to determine which characters are allowed in CORAL

source symbols, literals and strlngs, and macro
definitions respectively.

]

.

E ROVAL AIRCRAFT ESTABLISHMENT

-Pieference 2
Page ©3

Version/Date 1
Author 1, grant

CHAPTER 2

920C CORAL COMPILING SYSTEM

2.1 COMPILER PROGRAMS

2.1,1 MACRO PREPROCESSOR
2.1.1.1 Description
2.,1.1.2 Options

2.1 Descriptioﬁ
2 Options
.3.1 Description

3.2 Options

.4.1 Description
2.1.4.2 Options

Description

1
2 Options

.3 Order of Loading
4

2.2 DIAGNOSTIC PROGRAMS

2.2.1 COMPILER DATA RETENSION
2.2.1.1 Description
2.2.1.2 Options

2.2.2 OBJECT DUMP

Description

Options

Position in Core

.2
2.
2

NN
NN
w N

.
-
° .

. 2.3 FLOATING POINT LIBRARY PROCEDURE

2.4 INTERFACE WITH THE USER

.4.1 COMMAND LANGUAGE
.4.2 COMMAND FORMAT

2.5 MISCELLANEOQOUS NOTES

2
2

- 2.5.1 COMMON CHECKING

Library Procedure Loading

BTV

Reference 2
RGVAL!HRCRAFIEQ%&Q‘S TRENT 64
: Page ‘
A it
QZ0C CONAL CORIPILE | Versi of*/Da o ; 6/2/76'
) aA8n .
USERS ﬁ!ANUAL g :) Author , Various

D R R

T
- J

-

S
O

"

—- 4
L .

L~

| S

——e

#<

920C CORAL COMPILING SYSTEM

The minimum configuration required for compiling a
CORAL program using the 920C CORAL Compiling System

is an Elliott 920C with 16K words of core store, a
paper tape reader, a paper tape punch and a teleprinter.

(The standard minimum configuration for executing a
CORAL program is an Elliott 92CC with up to 16K words
of core store where the data always resides in module
O and the code resides in either or both modules O
and 1 (core above 16K can be used as indirect data
space, i.e. referenced by an indexed variable or an
anonymous reference with a large index). However,
since the object code executes in absolute addressing
mode and does not contain any of the special 920C
instructions, a program which will load completely
into the lower 8K, i.e. less than approximately 7K,

,may be executed on a 920B upwards compatable computer.
/ , .

‘The 920C CORAL Compiling System consists of:
Five Compiler Programs:

Macro Preprocessor
.Pass 1A

Pass 1B

Pass 2
- Linking Loader

Two Diagnostic Programs:

ACompiler Data Retention
Object Dump

A Runtime Library Procedure:
Floating Point Package

The structure and purpose of these programs is described
below followed by a description of the standard method
of interface with user.

All of the following programs run on level 1 and all
execute in absolute addressing mode except for the
Loader which contains some module relative code.

e T e P e Y 1 e 58 N R £ A3 ER (00 65 i 0 o B o8 1 e 1810 bt

g»* Some of these limits are relaxed using the BATENDED LCADHR‘%

-

X

/AP

') . c 2.1
ROYAL AIRCRAFT ESTABLISHMENT Referez;use
: - Pege
9200 CORAL COMPILER . '
. Version/Date 16/2/67
USERS MANUAL

Author . Various

1

o]

ﬁ‘

-

M~

.

r_m;

-
L.

|

1

|

1

COMPILER PROGRAMS

The following description outlines the purpose and
options provided by each compiler program. It
assumes a knowledge of the remaining chapters of

- this manual to avoid repetition. A diagram of

Compiler operation and a summary of Compiler 1nput/
output are provided in Apprendices C and D.
respectively.

The action performed as a result of error detection
within each pass of the Compiler is described in
the relevant section below. However, there is a
class of checking which produces a warning message

“indicating that the user may have misused the

language but not seriously enough to affect the
compilation. In this case the compilation continues
as normal and it is the responsibility of the user
to determine if this is sensible and continue or
terminate compilation accordingly. Reference should
be made to Chapter 4 for all error and warning

.situations.

It must be noted that Passes 1A and 1B were
originally one pass, hence their names, but had

to be split due to their total size. The passes
were not, therefore, originally designed as separate
‘entities and the split was made as simple as
possible - unfortunately resulting in the procduction
of a large intermediate code in proportion to the
source, for transfer between the Passes.

ROYAL AIRCRAFY ESTABLISHMENT
Page ©6

Version/Date 1
Author I, Grant

 §20C CORAL COMPILER
| USERS RIANUAL

| Refefence 2.1.1 .

_]

]

——

B

(.

[

-

MACRO PREPROCESSOR

Description

" The Macro Preprocessor is a separate'prepass to the

Compiler which purely expands text.

It accepts CORAL source text containing macro
definitions, calls and deletions and produces
macro-free CORAL source text having expanded all
the macro calls and from which all the 'DEFINE'’

and 'DELETE' directives have been removed (in so
doing it performs syntax analysis to CORAL symbol
level). All characters, excluding the 'DEFINE'
and 'DELETE' and the 4< and >t pairs enveloping the
macro definitions occurring in the source are '
copied into the expanded source. Detection of an
error or warning situation will not inhibit the
production of expanded source and it is the
responsibility of the user to determine on completion
of processing whether the output is useful or not.

Execution of the Macro Preprocessor is optional and
only necessary if the CORAL source to be compiled
contains macros.

The rules governing the position and contents of
macro definitions, calls and deletions (l.1.15)
allow the Macro Preprocessor to be used as a general
software tool since it allows libraries of macro
definitions to be built up independently of the
CORAL programs in which they are referenced.

[P

t ’
R |

=

]

BAPR

Reference 2.1.1.2
Page 67 _
Version/Date 1

ROYAL AIRCRAFT ESTABLISMMENT
§20C CONAL COMPILER

r-“ -

P 18 RaL : ’ '

L] USEPS'¥ANQ%% 3 Author L Grant

fﬁ' > e

™ :

L) MACRO PREPROCESSOR

M 2.1.1.2 Options

- " The following options are provided by the Macro

~ Preprocessor using the standard user interface (2.4)

; (1) Source Output Device. N

o ' The expanded source may be output on the paper

L tape punch, teletype or not at all (for checking
purposes) . , : .

T
[S—

The default is the paper tape punch.

(2) Error Output Device.

The error and warning messages may be output
on the paper tape punch, teletype or not at
all. (It must be noted that with (1) and (2)
the expanded source and error messages will
be .intermingled if the same output device is
requested). _

The default is the teletype.

(3) Conditional Compilation (1.2.4)

If the conditional compilation language feature
is required it is necessary to specify this
requirement on the use of the Macro Preprocessor
in order that any macro definitions, calls or
deletions may be recognised between the % and ;.
If not specified such statements will be treated
as comment sentences. - : _

‘The default is that this dption is not required.

(4) Source Checksum.

The option of reading each source tape twice
to perform a checksum test on it is provided
"with the Macro Preprocessor.

The default is that this option is not required.

Reference 2.1.2

Page 68 ‘
Version/Date 1

Author L Grant

- ROYAL AIRCHAFT ESTABLISHMENT
§20C CORAL CORAPILER

USERS MANUAL

T

]

S 1

]

,444

! o H

—

1

—
| G—

— —
. [——

—
[—

[

PASS 1A

Description

Pass 1A is the first main pass of the compiler, the
purpose of which is to syntax check the CORAL source.

It accepts macro-free CORAL source text for a unit

of compilation and produces an intermediate code

form of the source for input to Pass 1B, having
performed all the necessary syntax checking. Further
information is transferred to Pass 1B from Pass 1A
within compiler data tables. The detection of an
error will not cause the output of intermediate code
to be inhibited and processing will continue in order
that the intermediate code may be submitted to Pass 1B
for semantic checking.

Execution of Pass 1A need not be preceeded by
execution of the Macro Preprocessor unless the CORAL
source to be compiled contains macro definitions,
calls and deletions.

~A§! o A e 3 ' ~ Reference 2.1.2.2
(g ?{D‘{AL AIBRCHAFT ESTABLISHMENT '
Page 69 _

q 820¢ OlAL CO:WPELER.' ; Vexfsion/Dai:e 16/2/76
“ e - USERS MANUAL v - Author Various
Cnt
|
— PASS 1A R T
b . : ’ : S
- 2.1.2.2 OEtions |
M ‘ ‘
P he fol1ow1ng options are pro vided by Pass 1A u51ng

_ the standard user jinterface (2. 4)
™ . ' I :
N (1). Intermediate Code Output Device.
r The Pass 1A intermediate code may be output on
Dl the paper tape panch or not at all (for checking

: purposes). : : B
M
L) The default is the paper tape punch.
al | |
L))
- (2) Error Output Device.
- The error and warning messages may be output on
= the paper tape punch, teletype or not at all.
Li (It must be noted that (1} arnd (2) cannot be
requested for the same device). :

(G '
L The default is the teletype.
M (3). Conditional Compilation (1.2.4)
. : .

: If the conditiocnal compilation lénguage feature
- is required it' is necessary to specify this
L requirement on the use of Pass 1A,
5; The default is that this option is not requiféd.
L ’ -

(4) Source Checksum,

(5)

The option of reading each source tape twice in
order to perform a checksum test on 1t is
provided with Pass 1lA. '

The default is that this option is not required.
Object Map. |

The option of providing a map of the object cocde
from Pass 2 during production of the relocatable
binarv must be specified on the use of Pass 1A.
A deszcription of the format of this map is provid
in 4,1.4.2, The map mav be produced on thc page
tape punch or the teletype. :

M:]

.RO":‘AL AIRCRAFT ESTABLISHMENTY

Reference 2.1.2.2

- Page 70

820C CONRAL COMPILER "Teene" 38/4
USERS MAHUAL -

Autnor L Grant

—

™
)

- [
- L

-

o

2.1.2.2
(Contd)

PASS 1A

(6) -

(7)

Floating Indication.

The option of providing an indication whenever

" the~compiler invokes a rescaling operation to

floating point format within Pass 1B is

~available. (The algorithm for evaluating

expressions (1.1.9) may cause floating point
processing to be invoked whether there are
any floating items in the CORAL’ source or not).

The default is that no such indication is
required.

Stack Positioning Commands-
Three commands are available to givé the user

the option of repositioning the compiler stacks
if required. The default values are set to

~enable the compiler to run in 16K with the

maximum data space, and are

14710

Stéck start address, SSS8
Stack length, SSL ' 1670
Stack size difference, SSD '_400

In general, to run the compiler in wore core

the stack length option will be changed. The
other two options are less likely to be used.
-The stack size difference is the amount by which

- the stacks must be contracted at the end of
. Pass .1 to make room for the code of Pass 2 to be

loaded, and obviously depends on the value of the
stack start address.

e

BAP

Reference 2.1.3
Page 71
Vérsion /Date L

ROYAL AIRCEAFT ESTARLISHMENT
820C CORAL COMPILER

coe JUAL
USEﬂafﬁ&&U‘E Author L Grant

2.1.3

2.1.3.1

PASS 1B

Description

Pass 1B is the second main pass of the compiler,

the purpose of which is to semantic check the CORAL
source. '

It accepts the intermediate code from Pass 1A of a

unit of compilation and produces a further intermediate
code form for input to Pass 2 having performed all

the necessary semantic checking. Further information
is transferred to Pass 2 within compiler data tables.
The detection of an error during Pass 1B or previously
in Pass 1A will inhibit the production of intermediate
code from Pass 1B but will not stop the processing of
the intermediate code from Pass 1A in order to detect
as many errors as possible in one run.

Execution of Pass 1B must normally be préceeded by
that of Pass 1A due to the passing of information in
compiler tables.

Reference 2.1.3.2

’j @&E) ROVAL AIRCRAFT ESTABLISHMENT
Ll : Page 72
00 COaA 3V ER .
— . o2 OnAL CF" PILER " Version /Date 1
L,«}’_ - v g . R -
N USERS' MARNUAL Author 1. Grant
rﬁ = ;.g
|
™ .)
|| PASS 1B
2.1.3.2 Options
o There are no specific options provided by Pass 1B -
i the output of intermediate code and error and warning
D messages will be automatically produced on the
Co devices specified for that of Pass 1lA.
((;”]‘ i- - . - .l ' . -
L The floating warning message optlon is requested in-
Pass 1A (2.1.2.2).
o |
]
™M
[
g
o
3
Lo
M
(M
|
Co
0
D
L
I
L

T

I’T

o

‘ _ cference 2.1.4 .
ROYAL AIRCRAFT ESTADLISHMENT :
. Page 73
S20C CORAL COripPiLE .
URAL CURMPILER Version /Date 16/2/76
USERS Fﬁ&ﬁgUAL

Author Various

Faban

B

PASS 2

Description-

‘Pass 2 is the third main pass of the compiler the
purpose of which is to generate object code.

It accepts the intermediate code from Pass 1B of a
unit of compilation and produces relocatable binary
of the object code for input to the Loader. Pass 2
also provides (optionally) a map cf the object
program (4.1.4.2).The detection of an error, of
which there are very few, causes processing to halt
since it will be irrecoverable from the Compiler's
or User's point of view. If any error has been
detected during Pass 1A or Pass 1B, Pass 2 should

not be executed and will itself report an error if
this is attempted. :

Execution of Pass 2 must normally be'préceeded by
that of Pass 1B due to the passing of information

" in compiler tables.

Note that contrary to any other information transferred
between compiler passes each relocatable binary tape
must be input to the Loader backwards, i.e. the
character produced last from Pass 2 must be input

first to the Loader.

In practice this will usually be achieved by winding

up the relocatable binary tape, produced by Pass 2,

" backwards, when it is first produced, then writing its

name on the "outside" end; so that it can then be read
by the loader (possibly frequently, as in the case of
a 'LIBRARY' tape) without further complication.

)
. rd
N e

ok

I3

'
Loy

4

[| S

| —Y

[T

[

CAP

-

Reference 2.1.4.2

Page 74
5 i &5 S yRBOS RS 7
§20C CONAL COMPILER »Version/Date 1

USERS MARNUAL : author L Grant

ROYAL AIRCRAFT ESTABLISHMMENT

]

St

2.1.4.2

PASS 2

Optiors

There are no specific options provided by Pass 2 -
the output of relocatable binary and error and
warning messages will be automatically produced on
the devices specified for that of Pass lA.

Pass 2 provides a map of the object program if
requested during the use of Pass 1A(2.1.2.2).

“.,_

ot

]

1

BAP

- Reference 2.1.5
Page 75

Version/Date 16/2/76
: n), .
USERS F*Afdt}ﬁl. Author

ROYAL AIRCRAFT L%'YAE’JLE SMAMENT
820C ConRAL COMPILER

Various

s oaiand”

Lo

= s g M AR PR S EUPRAPATY

]

-
—

T

L

N

L~

LOADER

Description

' The Loader links together independently compiled

CORAL units of a program into an executable program
in core. It is purpose-built and therefore does
not allow CORAL units of compilation to be linked
with any other type of program unit produced via
another compiler or assembler. :

The Loader accepts relocatable binary from Pass 2
of one or more units of compilation which it 1link
loads producing an executable program in core. As
the loading process is performed information on
the utilisation of core is printed on the teletype

(4.1.5.2)

During loading detection of an error which is not
considered disastrous does not inhibit the loading
process and execution of the object program is at

" the user's discretion. However, an irrecoverable -

error will cause the loader to halt. It must be

noted that an incomplete program, i.e. a subset of

the units of compilation comprising the whole program,
may be executed similarly at the user's discretion.

Execution of the Loader need not immediately follow
that of Pass 2 since no information is transferred

. other than within the relocatable binary.

i
Ly A s

N

P
| IO

Kot

.
o
o

| -

Peference 2.,1..5.2
Page 76
Version/Date

Author

16;2/76

Various

r
[

7

SO —

-

- —
[

T
[

[

L

2.1.5.2

LOADER
Options

The_following options are provided by the Loader
using the standard user interface (2.4).

(1)

(2)

(3)

those output on the teletype by the Loader,

Small Loader Option

Extended Loader
orly mentionned

: D T I R N T
the peragraphs & ecliinid &l

This facility became obsolete when the
heoare availacle; and ite existance 1is

here to avoid renunbering
crogsas=-references.

The default is that the reduced Loader is not
required.

Radix of Input/Output.

The radix of the numbers input by the user on the
teletype during the specification of options, and

i.e. core map, entry point and error nunbers,
may be either octal or ‘decimal.

The default is octal.

Core Module Bounds.

It is possible to instruct the Loader to reserve
areas of core at either end of each core mocule
and thereby load the object program between them.,
Tf the Loader is requested to reduce the space -
it has automatically reserved by default it

reverts to the default values,

1

m“—r'
[

]

OGP

ROYAL AIACRAFT ESTABLS;SMME?\ST

Reference 2.1.5.2

. - Page 77
~ = napy .)

USERS .F"’“f‘ag"‘:‘!‘ -' -~ Author | ~ Various

it

-
[E—

—
| SO

2.1.5.2
(Contd)

LOADER

(4)

(5)

The defaults are:

Module ¢ Lower Bound: 10544 5?@0
‘ . 17745 - 8195

Module ¢ Upper Bound: 8

Module 1 Lower Bound: 200008 =~ 8192,

"Module 1 Upper Bound: 34563, _'147O7w

N.B. It is not possible to force the whole
program into module 1 since data must
“reside in module O although code may
reside in either module O or 1.

See 5.1 for the runtime storage allocation of
a CORAL program.

Absolute Binary Dump.

The option of producing an absolute binary dump
of the object program is provided. The dump is
in the standard A.C.D. 200 Series 18-Bit Binary
Tape Format 1/4/70 for future loading using

the hardware initial instructions.

The default is that this is not required.
Program Level Number.

The Loader provides the option of loading multi-
level programs (1.2.3.1) whereby it creates all
the interrupt handling house-keeping code which
‘envelopes the segment(s) on each level of the
program. The order of loading the units of

~compilation of a multi-level program is described

in 2.1.2.3.2 and the interrupt handling house-
keeping code sequences are listed in 5.4.4.

The default for the level of a unit of compilation

when loaded normalily is level 1 and therefore a
‘"single level procgram will always run on level 1,

AP

ROVAL AIRCRAFT ESTABLIZHMENT

: Referénce 2.1.5.2

g Page 78 _
- 30C CORAL COMIPILER . '
pRALL Version/Date 15/2/76
crne O TR Y8
i .US...R,.;__}‘\#‘!»Q? .UML Author Various
. ";

m ~ w..g, I3
B LOADER
Ll .

' 2.1.5.2 (6)- seif-triggering
[(Conta: |
o The Loader provides the option of producing

i a Self- triggering ebject code program
I on the absolute binary dump.
- The default is that this is not required.
I .
r (7) AutoStart
3 S | .
o No specific option is provided in the Loader to
— request the Autostart facility: the code needed’'is
- automatically inserted in the housekeeping code of
L pulti-level programs; for it to function correctly

’ Self-trigsering must also be selected.

T’ See 1.2.3.4. '

L]

!

|
L

|

L)
o
|

B

»

-
-
L

M:E"

,m
[E—

- Reference 2.1.5,3
 Page 79
"ITessue 33/4
Author L Grant

" ROYAL AIRCRAFT ESTADLISHIENT
$820C CORAL COMPILER
- USERS MANUAL

-2.1.5‘3

2.1.5.3.1

2'1. 5.3!2

-—cna

'1.OADER

-Oxrder of Ldading

Normal (single level) program.

The relocatable binary paper tapes for the units of
compilation may be loaded 'in any order excluding

- the library tape(s) which must be loaded last. The

entry point of the program is assumed to be the first

seamect . omplled O0f the first tame loaded. The address
,
4. €

of this is specified by the loader when' loading is comp

e.g. Segment tape 1 + Program entry point
- Segment tape 2 '
']

t
Segment tape N
Library tape (s)

Multi-level progfam.

The relocatable binary paper tapes for the units of
compilation of a multi-level program must be loaded
together for each level but may be in any order
within the level followed by the library tape(s) for
that level. (The levels may also be loaded in any

order). The same library tape (s) may be read for

each level and the Loader will autcmatically create

~a copy of each relevant procedure per level upon
" which it is used. The entry point of a level is the

first statement .0f the first segment compiled on the fi

"tape loaded at that level; the entry pcint of the progr

is assumed to be the entry point or .level 1

(specified by the Loader on completion of loading).

“e.g. Segmeht £ape 1, level 1 <«level lbentry point

(= program entry point)

-y -

Segment tape N, level 1
Library tape(s)

Segnent tape 1,level 2 +level 2-en£ry point
. ' ' N .

Segrment tape N, level 2
Library tape(s)

te

A

ROYAL AIRCRAFT ES'?'ABi.!S!"Ef‘v’iEMT

820C CORAL COMPILER

Page 80

;a;;! - "Tgeuel 5?/4
d USERS MANUAL ~Author L Grant
M 3 . v
<4
[P
LOADER v
| 2.1.5.3.2 Segment tape 1, level 3 <«level 3 entry point
{(Contd) ~ 1 : : :

. A '

| Segment tape N, lovel 3 .

' ‘Library tape (s)

; ‘ Segment tape l,‘level 4 '+ievel 4 entry poiht

} . ' _ . . . R

.o [.

. ' v ,
M Segment tape N, level 4
i Library tape(s) ' .
L
™
L
i
L
0
L
{
i
B
-
)
L
L
|

‘Reference 2.1.5.3.2

I

" Reference 2.1.5.4
Page 81) ‘
Version /Date 16/2/75

USERS MANU AL ‘ Author Various

ROYAL AIRCRAFT ESTABLISHMENT

GrsaS PANFRTY fad S4B BIBEE &7
820C CERAL COMAPILER

L2d b

1. 1
Funrindiedt?

ey

2.1.5.4

- LOA

Library Procedure Loading

DER

.As
loaded after all units of compilation for the’
current level. The content of a Library tape

is

a scan of each Library tape and loads only those
procedures which have been referenced by previously
loaded units of compilation, i.e. having the same
Library procedure number. Any number of Library
tapes may be scanned until all references are
satisfied. The Loader outputs a description of
the Library Procedures loaded (4.1.5.2).

The following points should be noted:

(1)

(2) Since communication with a Library procedure

(3) The Library tape supplied with the 920C CORAL

(4} only Library procedures which are called by

described in 2.1.5.3 the Library tape(s) are

as defined in 1.1.1.1.4. The Loader performs

The Loader performs no check on duplicate Library
numbers and simply loads the first procedure
encountered with the required number (last
compiled since loading backwards) - all
subsequent procedures with the same number

being ignored. This therefore allows the

user to redefine Library procedures.

is via the Library procedure number and not
the name, reference to different procedure

names which have the same number will cause
calls to the same procedure at runtime.

Compiling System, CAPQF, contains the Compiler
Floating Point Library Procedure (2.3) which
has the Library number 1. The user should
therefore avoid the use of this number since

redefinition of the procedure would no doubt
have disastrcus consequences.

previously loaded units of compilation are locaded
- redundant specifications at the head of a unit

of compilation do not cause the respective Library
procedures to be loaded.

.m
<
Ty

Slgp

o

i

S

o

Lwaﬁ"us

GL\P

“~Reference 2.2
Page 82 |

~ Version/Date 1
Author L Grant

ROVAL AIRCRAFT ESTABLISHMENT

(1]

200 CONAL COMIPILER

USERS. MARUAL

~

-

DIAGNOSTIC PROGRAMS

The following programs are off-line programs
supplied as part of the 920C CORAL Compiling
System to aid in the development of CORAL
programs. ~

CAR

-

Reference 2.2.1
Page 83
Version/ Date 1

- ROYAL AIICRAFT ESTABLISHMENT
820C CORAL COMPILER

[

Retention
Program

N.B. The Compiler
(Reload)

performs no checksum
calculation on the \P

dumped tables and mis-
punched tapes could
cause undefined results. Compi ler
Table s

’ USERS MA%U'?L Author I Grant
-.¢ - - . -
r——, ~ >4
| ! -
B 2.2.1 COMPILER DATA RETENTION ~
. 2.2.1.1 Description -
R | At -
L Since Pass 1A and Pass 1B transfer information in
compiler data tables to Pass 1B and Pass 2 respectively, “
r the three passes, Pass 1A, Pass 1B and Pass 2 must -
P normally be run consecutively for the compilation of
) a CORAL unit without interruption. However, in i
. order to provide the facility of running several units
N of compilation through a single pass, e.g. Pass 1la
- for syntax analysis, before proceeding to the next J
- pass, the Compiler Data Retention Program is -
N supplied which: -~
i (1) Dumps the compiier data tables to the paper tape -
f} punch following compilation through a pass, to be '
L] retained by the user together with the relevant
' intermediate code. v -
(} (2) Reloads the dumped compiler tables from the paper .
L tape reader before execution of the next pass.
F} Therefore, with the use of this program Passes 1A, 1B
L and 2 can be made independent of each other.
r The following diagram summarises the operation of the)
L Compiler Data Retention Program: ‘ -
m Compiler -
I Tables -
& -
L N
- Compiler Data .
| Retention
— Program
(Dump)
i Compiler
Tables
B
— Compiler Data

‘ Reference 2.2.1.2
ROYAL AIRCRAFT ESTABU?&HMENT

32 RAL COMPIL :

o ﬁ;@ﬁ: C@.{-QL Cf} PILER ‘ Versnon/Date‘ 1

{f usEgSWWAMﬁA}‘ o Author L Grant

rj" ~ ?3

M

l COMPILER DATA RETENTION

- 2.2.1.2 Options _ ' o e
The only option provided by the Compiler Data

. Retention Program using the standard user
interface (2.4) is whether the dump or restore
of the compiler tables is regquired.

[] The default is that neither is required.

™

I

L

i

A

-

[

3

i

L

L -

{

L

(

Ll

~

K

C

ROYAL AINCRAFT ESTABLISHMENT

Page &5
: SRAL COMPRLES ion/
920C CORAL COMPIER Version/Date
USERS MANUAL ~ Author

Reference 2.2.2

16/2/76

Various

— J

—

,.‘.“.

T

L~

OBJECT DUMP

Description

In standard 900-Series terminology this program is not, as
one mizht have thouzht, a Binary DUFP program, it is a
STORE PRINT program giving Telecode output.

The Object Dump Program is a program completely
independent of the rest of the 920C CORAL _
Compiling System. It is for use at run time to
provide a readable dump of any requested areas

of the 920C core store in octal, decimal and

instruction word format. The format of the

dump is described in 4.2.2. It can be used

in conjunction with the object map produced by
Pass 2 to determine the centents of the locatlons
constltuting a CORAL program, :

The following diagram summarises the operation
of the Object Dump Program:

Core

Object
Dump

&

Program

\V

Area of
Core

ROYAL AIRCRAFT ESTABL ISHMENT

o
- Page 86
$20C C RAL TAPILER .
M ° CG e . Version/Date 1
L] U@ERSFWANUAL _ Author L Grant
h e
|]
M ‘ .
. OBJECT DUMP
M 2.2.2.2 ORtions
L
.The following options are provided by the Object
M Dump Program using the standard user interface (2.4).
|
; (1) Radix of Input . -
P The radix of the numbers input by the user on
L the teletype during the specification of
options may be either octal or decimal.
o] ~The default is decimal.
L _
: (2) Core Module Numbers.
—
{ The number of the core module to be analysed
- . may be specified.
[The default is module O.
L
, (4) Core bounds.
[The bounds finclusive) of the area to be
L ~dumped within the specified core module may

(5)

Note:

be specified.
'The defaults are -

Lower bound: 0
Upper bound: o

Dump Output Device.

The dump may be output on the paper tape
punch or teletype.

The default is the teletype.

If the core module and core bounds combination
specifies a non-existent core address the 920C
computer will halt. There is no error check
in order that this program can be used on
different machine configurations.

“Reference 2.2.2.2

s

M A\ ; g Reference 2.2.2.3 .
L] RGYAL AIRCRAFT ESTABLISHMENT :
. , ' . Page 87 .
L3 . YRR E2 .
~ _ JZG? COR%’\L C??wf fLER ‘ \/ersion/Date 1
. USERS MARNUAL Author L Grant }
r s |
3
M
g | N
OBJECT DUMP j
L) 2.2.2.3 Position in Core 3
- -
L o
. A
M -
R 470 DATA -
-
M
g e
} MODULE O ;
.
|
= 8192 o
||
LJ =
r } "“‘J
L MODULE 1 n
)
F 14620
L PROGRAM 3
[-7
| -
Note: It is only recommended that this program
P is used for examining data after the -
,L"‘ object program has been run since unless .
module O upper bcundis altered by the
user it will overwrite part of the object .
L program. -

» - ' ’ eference 2.3
ROYAL AIRCRAE—T ESTABLISHIMIENT Referanc

, ‘Page 88
€204 CORAL COMPILER _ i
Version/Date 16/2 /76

USERS I ‘EQNUAL . : '
Author = Various

fo—

-y

FLOATING POINT LIBRARY PROCEDURE

The floating point library procedure is the only
library procedure issued as part of the 920C CORAL

aComplllng system.

Since the 920C has no floating point hardware the
object code generated from CORAL source containing
flocating point operations has had to include software
floating point processing. This is effected by

using a procedure which interprets instructions as-
floating point operations when appropriate. This
floating point procedure is therefore a library
procedure and it is based on the standard 220C

“floating point package, QF, with modifications to
_suit the object code strategy of the Compiler.

This floating point library procedure is inaccessible
to the user since there is no mechanism for :
referencing it and it would serve no purpose - the
invoking and use of this procedure is performed
automatically and is transparent to the user. The

.procedure has a library number outside the range

of numbers available to the user.

As far as the user is concerned a knowledge of the
content and use of this package is unnecessary and
the only action reguired is on loading, whereby if
requested by the Loader the floating point procedure
must be loaded along with any other user llbrary
procedures. :

It must be noted that any error or warning message (4.3)

- will always be output to the téletype.

The Floating Point Library Procedure, (T 16/2/16 Version),
occupies zpproximately 360 program locations and 45 data
locaticns, on each la,vel that uses it,

no - o : 2.4
@Z;\,] P ROYAL AIRCRAFT ESTABLISHMENT Reference

Version /Date 1

826C CONAL COMPILER
MANUAL o
USERS MANUAL | Author L Grant

]

[V

]

——

SR
|

| —

r-

2.4 INTERFACE WITH THE USER

2.4.1 COMMAND LANGUAGE

Communication between the operator and a program of
" the 920C CORAL Compiling System for selection of
compiling options and input/output devices is by
‘means of commands typed in at the teletype in

response to an invitation to type from the compiler

program.
There are two types of commands:

(1) OPTION commands.

The effect of an option command is to set up
information for use by the compiler program,
e.g. the input device. No action is taken by -
the compiler program other than remembering
this information and replying with a further
invitation to type upon which another option
command can be typed as appropriate.

(2) ACTIVATION command.

There is only one activation command, i.e. GO2,

~whose effect is to set the compiler program
processing according to the options previously
set up or the default values if no options
have been specified. A further invitation to
type will not be given by the compiler program
until the process has been performed and
therefore, until this time, no further command
can be issued by the user..

Option commands may be given in any order
between activation commands.

If an incorrect option command is typed it
 can be altered by typing the correct command

(there -is no means of cancelling a command -

other than by the use of an illegal character

beforeﬁ) .

A'descripﬁion of command errors and the user
‘action required is described in 4.4.1.

“Reference 2.4.2

H
EoNe

T @A |
L @ﬂﬂ? ROVAL AIRCRAFT ESTABLISHMENT g\
o : _ Page 90 3
220C CORAL COMPILER . -
w e g'?‘%‘w Version/Date 1
P rpg RTARY . v e
Lo USERS W/ stﬁﬁl}. Author 1, Grant k|
o i :
‘ {
7
L 2.4.2 COMMAND FORMAT 3
{T The invitation to type a cbmmand issued by the .
L) ' compiler program is an * at the start of a new line. 3
TI The format of an option command issued by the user
[l is: : ™
r (1) A three character alphanumeric Jroup. ‘j
{ (2) If an option is to be specified an =. ™
7 (Typing of an option command without an - y
W option .is equivalent to OPT=YES) .
1 . L . . o
. ’ i
_ (3) If an option is to be specified, an option .
; parameter, which will be:
| o
(a) A number, OT 3
= (b) A device specifier, or J
| (c) The words YES or NO.
o For example to specify that the output is to be ;
P from the paper tape punch the option command:
[: . .
-k QUT=PTP)

I ~ - o | | :
L must be typed, and to initiate execution of the .
compiler program the activation command:

1 . -

N *

L] GO)
) nust be typed.

¥ - . :

- A description of all the commands and their associated -

parameters for each compiler program is provided

with the respective operating instructions in Chapter 3.

-

R

L

ﬁ,

n§o ' Reference 2.5
ROYAL AIRCRAFYT ESTABLISHMENT

820C CORAL COMPILER ‘Version/Date 1
USERS, MARUAL o Author L Grant

1

1]

SN

2.5 MISCELLANEOUS NOTES

2.5.1 COMMON CHECKING | o

The following checks are perfofmed by the Loader
on the Common communicator and its associated
segment (s) for the units of compilation of a program:

(1) The size of the runtime Common area is
the same for all units of compilation.

(2)° A Common label is only declared once.
(3) A Common switch is only declared once.

(4) A Common procedure is only declared
once and all are declared.

. There are no other checks performed on Common
and it is the responsibility of the user to
ensure that the same Common communicator is used
with each unit of compilation of a CORAL program
and that Common procedures are not shared between
interrupt levels. It must be noted that the
Loader only loads one of the Common areas it encounters
~ all other Commons are" simply checked as
described above.) : '

: ' Reference 3
= ROYAL AIRCRAFYT ESTABLISMRENT
. ' an, ™ ARATIY
920C CORAL COMPILER Version/Date 1

ﬂ' '-,USERSﬁﬁwaAL " Author I Grant

~ -]

¥

/| CHAPTER 3

- OPERATING INSTRUCTIONS

B =

L

) 3.1 COMPILER PROGRAMS

o '

|

- 3.1.1 MACRO PREPROCESSOR

N 3.1.1.1 Operating Instructions
L] '3.1.1.2 Option Commands

M 3.1.2.1 Operating Instructions
L : 3.1.2.2 Option Commands

3.1.3 PASS 1B _

M 3.1.3.1 Operating Instructions
L 3.1.4 PASS 2 . .

5 ~ 3.1.4.1 Operating Instructions
B 3.1.5 LOADER o _
L ' 3.1.5.1 Operating Instructions

3.1.5.2 Option Commands

i} 3.1.6 OBJECT PROGRAM

. 3.2 DIAGNOSTIC PROGRAMS

i
L 3.2.1 COMPILER DATA RETENSION

; 3.2.1.1 Operating Instructions
| .3.2.1.2 Option Commands ‘
. 3.2.2 OBJECT DUMP _

& 3.2.2.1 Operating Instructions
. 3.2.2.2 Option Commands

! 3.3 MISCELLANEOUS NOTES

PAPER TAPE OUTPUT SEPARATICN
COMPILER DATA SPACE OVERFLOW
COMPILER INPUT CHECKSUM CALCULATION

www
»
w W Ww
*
w N =

7

q

I} T}
GL?

Reference 3
"Page 93
~ Version/Date 2

Author L Grant

ROVAL AIRCRAFT ESTABLISHMENT
$20C CONAL COPAPILER
| USERS MANUAL

.

(\,,A_‘
Lo

-
I

i
O

OPERATING INSTRUCTIONS

All programs comprising the 920C CORAL Compiling
System are issued as paper tapes in standard 920C
absolute binary format. '

A detailed knowledge of Chapter ‘2, which provides a
description of all constituents- of the 920C CORAL
Compiling System and the general mechanism of
interface with the user, is assumed. This chapter
simply provides basic operating instructions.

The basic operating instructions for each program
are: . '

(1) Load program usingihérdware initial
instructions. (Trigger to entry point
using hand-keys if using the Loader since
it is not self-triggering). :
(2) Input option commands.
(3) Type GO -
An expansion of this for each program is given below.
The option commands should have the following

format: : _ -

"COMMAND" = "PARAMETER".

O\ 58 . Reference . 3.1
_ ROYAL AIRCRAFY ESTABLISHARIENT
& ' 200 AL COMPILE .
: 820C CORAL COMPILER Version /Date 1
AR '
m USERS, TAANUAL Author L Grant
N
]

f_“ ~ 6
. 3.1 COMPILER PROGRAMS
.
. This section provides the operating instructions
. for compiling, locading and executing a CORAL
L] program using the Compiler Programs. -
m For a description of the Compller Programs for
B program production, see 2 1.
mM
i
Ll
(_1‘
L)
M
L
M
L)
0
L,J
L
I
P

I
L
L
‘i
,L_Jl

i
d

Reference 3.1.1

ROYAL AINLRAFY ESTMBL?@;'M T
Page 95

Versicn /Data

Authsr .

820C CONAL COMPILER
USERS MARUAL

B
[|

3.1.1.1

MACRO PREPROCESSOR

For a deqcrlotlod of the Macro Preprocessor,
see 2.1.1.1.

Operating Instructions . .

(1) Load the Macro Preprocessor binary paper tape

- using the hardware initial imstructions.

It is self-triggering. (If you wish to

re—~enter the macro-pass then trigger to 177%68)

An * will be printed on the teletvpe as in
invitation to type.

(2) Type the option commands on the teletype

according to the requirements (3.1.1.2)
An * will be printed on the teletype as an
invitation to type following each ccmmand.

(3) Place the first source paper tape to be
processed in the paper tape reader.
(4) Type the activation command GO)

(a) If no checksum option was specified the
source tape will be read and processed
the expanded source output.

or

(b) If the checksum option was specified the
source tape will be read and the message

'RELOAD TAPE' will be primted in which

case repeat (3) and (4) whereby the source

tape will be read, checksummed and

(5)

‘processed, and the expanded source output.

Repeat (3) and (4) for each scurce tape to be
processed. Each source tape must end

with *HALT' (1.1.1.1) unless it is the final
tape which ends with 'FINISH' znd all tapes
must terminate with a halt codes (1.1.1.1).
Following the processing cf each source tape
which terminates with 'HALT'the message 'LOAD

- NEXT TAPE' is printed on the teletype followed

by an * as in invitation to type in order to
initiate the processing of each subsequent tape.

GAT

ROVAL AIRCRAFT ESTADLISHMENT

- Referenc 3.1.1.1

iR e r RS PILE Page >
‘{ } VEQQ CONAL COMPILER EFSiOl »/Dat

V - USERS ?ﬁq&?{g?&i— Author L Grant
m g
1
MACRO PREPROCESSOR B
: 3.1.1.1 ('HALT' keywords are not transferred to the
- (Contd) expanded source). The Macro Preprocessor i
; halts following the processing of the source 3
‘ tape which terminates with fFINISH' since

» at that pecint all processing is complete. -
|
¢ (6) For re-use of the Macro-Preprocessor goto (1).
L
‘("W
|
)
L
L
-
§ |
-
.
N -

S

il

TR

BV

—-

ROYAL AIRCRAFT CSTADLISHMENT
820C CORAL COMPIER

USERS MANUAL

3.1.1.‘2

‘Reference
Page 97
Version/Date 1
Author L Grant

)

]

[
e d

| —

| ——

I‘

1

C

[

(-

MACRO PREPRQCESSOR

For a

description of the options see 2.1,1.2.
3.1.1.2 Option Commands
COMMAND |PARAMETERS ' | DEFAULT MEANING
. |

ouT Output device for expanded source:
PTP PTP Paper tape punch .
.TTY Teletype |
NUL No source output required

ERR Output device for error messageé:
PTP Paper tape punch
TTY TTY Teletype
NUL No error output requiied

CON Conditional compilation request:
YES Conditional compilation required
NO NO Conditional compilation not

required. ‘ :
v = YES
f

CKS Source checksum request:
YES Source checksum réquired
NO NO Source checksum not required

= YES

ROYAL AIRCRAFT ESTABLISHMENT

Reference 3.1.2

Page 98
20C CORAL COMPILE . |
920C CORAL CORMPILER Version /Date 16/2/76
USERS MAMUAL | -~ Author '\ Verious

3.1.2 PASS 1A

For a description of Pass 1A see 2.1.2.1.

(1)

(2)

(3)

(4)

(5)

3.1.2.1 Operating Instructions

Load the Pass 1A binary paper tape using the
hardware initial instructions. .

It is self-triggering. (If you wish to re-enter
_ Pass 1A then trigger to 17735 g).

An * will be printed on the teletype as an
invitation to type.

Type the option commands on the teletype
according to the requirements (3.1.2.2).

"Bn * will be printed on the teletype as an
invitation to type following each command.

Place the first source paper tape to be
processed in the paper tape reader.

Type the activation command GQ)

(a) If no checksum option was specified the source

or (b).If the checksum option was specified the source

Repeat (3) and (4) for each source tape to be
processed. Each source tape must end with 'HALT'
unless it is the final tape which ends with 'FINISH
and tapes must terminate with a halt-code (1.1.1.1).
Following the processing of each source tape which
terminates with 'HALT'the message 'LOAD NEXT TAPE'
is printed on the teletype folliowed by * as an
invitation to type in order to initiate the

tape will Dbe read and processed and the Pass 1A
intermediate code output. No intermediate
code will be output if it is small enough to
be contained within .core for transfer to PasslB.

tape will be read and the message 'RELOAD TAPE'
will be printed in which case repeat (3) and

- (4) whereby the source tape will be read,
checksummed and processed and the Pass 1A
intermediate code output. No intermediate
code will be output if it is small enough to be
contained within core for transfer to Pass 1B.

1

JEANE

Reference 3.1.2.1
Page 99
- Version/Date 1

ROVAL AIRCRAFT ESTABLISHMENT
820C CORAL COMPILER

: < LY. L)
USERS i\;}‘mUAL Author T, Grant

1

]

]

S

]

1

]

(6)

processing of each subsequent tape. Pass 1A
halts following the processing of the source

-tape which terminates with 'FINISH' since at

that point all processing is complete.

Since Pass 1A builds core resident compiler
tables for use by Pass 1B, Pass 1A must be
immediately followed by Pass 1B for this unit
of compilation. _ g '

9

e

.

WY o S ‘ : . A =) 1 3.1:2;02_
GB S\ ROYAL AIRCRAFT ESTADLISHMENT - Reference

;) . P_age 100
9200 CONAL CONPILE - .
! "Iscue"™ 3B/4

USERS MANUAL ’ ’
L Author L.Crant

]

]

)

PASS 1A

For a description of the options see 2.1.2.2,.

3.1.2.2 "Option Commands
COMMAND | PARAMETERS | DEFAULT . . MEANING.
ouT , - o Outpdt for Pass 1A intermediate
' ' ' code: _)
PTP PTP Paper tape punch
NUL No intermediate code reguired
ERR ‘ - , : Output device for error messages:
PTP Paper tape punch :
TTY TTY Teletype
NUL - 1 No error output required
 CON o ‘ Conditionul compilation request:
' YES Conditiocnal compilation required
NO . NO Conditional compilation not
4 required
v A =z YES
CKS . o Source checksum request:
YES ' Source checksum required
NO NO Source checksum not required
v . = YES
LST Output device for Pass 2 object
: . map: ‘ ‘
PTP *paper tape punch
TTY Teletype
NUL NUL No object map required
FWR - _ Floating warning request from-
Pass 1b:
YES _ Floating indicaticon reguired
NO NO Floating indication not recquired
v = YES
SSS Decimal - 14710 Stack start address
SsL nunber 1670 Stack length
ssD _ . 400 Stack size difference

* If the . cobject map is reqguested via the paper tape vunch

LTy 3T 8 Sy U Ty by T St 1 :
[N SRS W L WP PR R R S S ST Vel d

L Reference 3.1.2,2 ~
! ROYAL AIRCRBAFT ESTABLISHMENT ' . ;
{1_ » Page 101 j
! . Q200 COnAL COMPILER : Version/'Date_ 1
. . "
M USERS, MANUAL _ Author I Grant !
{ E N -7
u g K
1 3
|| v
- PASS 1A -{
. 3.1.2.2 ©Note that the following are not allowed: N
~(cont.) o _ rm
M v OUT = TTY i.e. Pass 1A intermediate code ;
(] cannot be output on the =
teletype i
B | 1
| or OUT = PTP i.e. Pass 1A intermediate code A
_ ERR = PTP and error messages cannot ’
™ be output on the same =
D device ;
OUT = NUL ,
M °f ERR = NUL "g
]L) oF
M k
L g
r —
| !
e : =
ra (e
L .
[-
L
]

ROYAL AICRAFT ESTABLISHMENT Reference 3,1.3
Page 102
8200 CORAL COMPILER ey
Version/Date 16/2/76
USERS MANUAL

Author - Various

L

3.1.3

3.1.3.1

PASS 1B
For a description of Pass 1B see 2.1.3.1.

Operating Instructions

N.B. If execution of Pass 1B does not immediately
follow execution of Pass 1A for the current unit of
compilation, and therefore the Pass 1A intermediate
code does not correspond with the core resident
compller tables, execution of 1B w1ll be undefined.

(l) Load the Pass 1B binary paper tape using the
hardware initial instructions.

It is self-triggering. (If you wish to re-enter
Pass 1B then trigger to 17735

8).
An * will be printed on Lhe teletypo as an
invitation

(2) Place the Pass 1A intermediate code paper

to be processed in the paper tape reader
ess the information has been passed in core

(3 1.2.1(5)).

- (3) Type the‘activation command GOQ . {There are

no option commands for Pass 1B - those
applicable from Pass 1A are used).

" The Pass 1A intermediate code tape will be read
and processed and the Pass 1B intermediate
code will be output.

S

EAP

Reference 3.1.4
Page 103
Version /Date 2

ROYAL AIACRAFT ESTABLISHMERNT

Simmen ey 2z maan
SZCT CORAL COMMPILER

r? UﬁERSEWA&U%% Author L.Grant

— 2

||

L] ,

i 3.1.4 PASS 2

L) For a description of Pass 2 see 2.1.4.1.

= 3.1.4.1 Operating Instructions

. N.B. If execution of Pass 2 does not immediately

- follow execution of Pass 1B for the current unit of

{ compilation, and therefore the Pass 1B intermediate

: code does not correspond with the core resident

- compiler tables, execution of Pass 2 will be

| undefined.

[. .

) (1) Load the Pass 2 binary paper tape using the

M hardware initial instructions.

L] , :
It is self-triggering. (2f you wish to re-enter

[3 Pass 2 then trigger to 17735

i An * will be printed on the éeletype as an

: invitation to type.

3] (2) Place the Pass 1B intermediate code paper tape

- to be processed in the paper tape reader.

[(3) Type the activation command GOQ,. (There

L) - are no option commands for Pass 2 - those
applicable from Pass 1A are used).

i : o

LJ The intermediate code tape will be read and
processed and the relocatable binary tape for

{{ the unit of compilation output.

L

Note: Wind the output tape up BACKWARDS in |
preparation for input to the Loader. |

N S

1]

EAE

Reference 3.1.5

ROYAL AIRCRAFT ESTABLISHMENT
Page 104

§20C CORAL COXMPILER

o
.USERSI&&&Q%L Author

Version/Date 15 /2/ 74

Various

[EN—

ey
U

,,4“‘

[l

P

3.1.5

3.1.5.1

3.1.5.1.1

LOADER
For a description of the Loader see 2.1.5.1.

Operating Instructions

Normal Loading

Normal Loading is the loading of a single level.
(level 1) program consisting of one Or more units

compilation using the non-reduced Loader.

(1) Load the Loader binary paper tape using the
hardware initial instructions.

(2) Trigger to 4096 using the hand-keys. (It
is not self-triggering). . ’

(3) Type the option ccmmands on the teletype
according to the requirements (3.1.5.2).

An . * will be pfinted on the teletype as an
invitation to type (if the reduced loader
option is specified see 3.1.5.1.2).

(4) - Place the first relocatable binary paper
tape of the program in the paper tape
reader, (Relocatable binary tapes
for the units of compilation of a program
may be loaded in any order excluding the
library tape(s) which must be loaded last.
The entry point of the program is assumed
to be the first statement of the first
segment loaded).

(5) Type.the activation command GOQ_.

The relocatable binary tape will be read.
A number of core utilisation messages will

of

be printed as the tape is processed (4.1.5.2)

followed by an * as an invitation to type.
(If the tape was not placed in the reader

backwards the message 'INVALID TAPE' is printed

on the teletype and (4) and (5) must be
repeated).

(6) Repeat (4) and (5) for each relocatable binary

tape of the program to be loaded and again
for each relevant library tape until all
library procedure calls are satisfied.

(7) Type the option comnmand END‘}.

An * will be printed on the teletype as an
invitation to typ=.

. o
0 , erence ' -~
_ @&P ROYAL AIRCRAFT ESTABLISHMENT : Refere 3.1.5.1.1 ",
' - Page & 106 3
ﬂ 820C CONAL COMPILER - o195 0
L] ' Version/Date 16/2/76 -
USERS MANUAL A | 3
- ce e Author ' Various B
. " "‘f}z
h“ LOADER 4
F“W ’ . . et
| 3.1.5.1.1 (8) Type the activation command GOQ .
' (Contd) ' .
r7 The processing will be terminated and the
o message 'PROGRAM ENTRY entry point' will be -
¢ printed specifying the program entry point -
i in the current radix. An absolute binary
o paper tape will then be output on the punch ¥
- if the option was specified in (3). 1In
: either case the object program will be ™
- resident in core awaiting execution. J
o N.B. The Loader cannot be rerun iithout reloading it. 3
?ﬁ _ A v R |
L A
L
- . . ‘ v
™ 3.1.5.1.2 Normal Loading by the Reduced Loadas ;
L] : ' .
[| This mode of operation is now obsolete, B
)
L] .
1
L A
Lo
f j
L .
[3
i | -4
Lo
L .
;)
| .
L:,z 4
o]
I }
(O <
ol

et

~——t

. . . Reference 3.1.5.1.3.
ROYAL AIRCRAFT ESTABLISHMENT :
‘ -Page 107 ,
S28T CORAL COMPILER VerSion/'Date 16/2/’76
USERS RANU _AL Author Jarions

ey

r
[

3.1‘5.1‘3

LOADER

Multi-level Loading

- Multi-level Loading is the loading of a multi-level

program consisting of four or more units of
compilation using the non-reduced loader.

(1)

(2)

(3)

(4)

(5)

(6)

Load the Loader binary paper tape u51ng the

-hardware initial instructions.

Trigger to 4096l ~using the hand- keys. (Tt

is not self-triggering).

Type the option commands on the teletype
according to the requirements (3.1.5.2).

An * will be printed on the teletype as an

invitation to type (if the reduced Loader

option is specified see 3.1.5.1.4).

! :
Type the option command LEV=Level noQ
specifying the level upon which the
following segments are to be loaded.

An * will be output on the teletype as an
invitation to type.

- Place the first relocatable binary paper

tape for that level: of the program in the
paper tape reader, .. - ... (Relocatable
binary tapes for the units of compilation

of the program must be loaded together for
each level but may be in any order within

the level followed by the library tape(s) for
that level. The entry point of a level is

assumed to be the first statement of the

first segrment loaded on that level; the entry
point of the program is assumed to be the
entry point of level 1).

Type the activation command GOp .

The relocatable binary tape will be read,a
number of core utilisation messages will be
, printed as the tape is processed (4.1.5.2)
""followed by an * as an invitation to type.

@Ec‘_\]? ROYAL AIRCRAFT ESTA&USHMENT

i |
v ! _ Page 108 & 109 -
’ 5Z0C CORAL COMPILER : o .

Version/Jate 16/2/76
M USERS RIANUAL N .
| ! ' T -Author Varicus
v(i B
_ 3
h A1

(7)

(8)

(10)

(9)

Repeat (5) and (6) for each relocatable

" binary tape of the current program level

to be loacded and again for each relevant
library tape until all library procedure
calls are satisfied. ‘

Repeat (4) -~ (7) for each level. (The same
library tape (s) may be read for each level
and the Loader will automatically create a
copy of each relevant procedure per level
upon which it is used).

Type the option command ENDJ) .

‘An * will be output on the teletype as an

invitation to type.
Type the activation command GO .

The processing will be terminated and the
message 'PROGRAM ENTRY entry point' will
be printed specifying the program entry

point in the current radix. An absolute
binary paper tape will then be output on

"the punch if the option was specified in

(3). In either case the object program will
be resident in core awaiting execution.

N.B. The Loader cannot be run without reloading it.

3.1.5.1.4 Multi—Level Loading by the Reduced Loader

- This mode of operation is now obsclete,

Reference -~ 3.1.5.1.3

-3

jf:ﬂ

3,1.5.2

1
_ [

[

B

avho) Reference
3 ROYAL AIRCRAFT ESTABLISREMENT
- v : Page 110 :
£ oonn PATILET . -
Q20 CONAL COMPILER | Versnon/Date '?-’3/2/76
USERS. MANUAL Author Vorious
LOADER
For a description of the options see 2,1.5.2.
3.1.5.2 "Option Commands
COMMAND PARAMETERS DEFAULT MEANING
RAD User interface Input/Output
number radix
8lo 8lo Octal
128(=lolo} Decimal
M@L 0-177717 1054 Module @ lower bound
M@U 0-177717 17745 Module @ upper bound
M1L 20C00~-37777 20000 Module 1 lower bound
M1lU 20000-37777 34563 Module 1 upper bound
DMP Absolute binary dump
required?
YES Yes
NO NO No
v = YES
LEV 1-4 Loading level specification
& @ 1l level program (all
, segments on level 1)
END Last tape loaded?
YES NO Yes.
NO NO No
v = YES
AUT Self-trizgering on loading?
YES Yes ' S ‘
NO NO No
v = YES
All unsubscripted figures are in octal,
The futostert fecility is proviied sutomaticsllyy in -
Maulti-level progroms only. Single-level programs needing
it ghould be loaded using I1EV=1 rather than 13V=0.
For it to Ffunction correctly AUR=YES must &lso be sclected:
1if SelfP-fricmrine ig VO scetually renuired zee 1.7.3.4.

R ' 5 Reference 3.1.6
/ ‘-7&1 ROYAL AIRCRAFT ESTARBLISHRAENT -
éi , , Page 111 ,
Ll S S APILES : .
v 200 CORAAL CONIPILER Versicn /Date 16/2/7¢
F USERS MA@P‘M‘ Author Various
L
B 3.1.6 OBJECT PROGRAM
- After loading using the 920C CORAL Loader, the
. object program is resident in core awaiting
t execution. '
f} To execute the object program in core:
(1) Trigger to the entry point using the
=) hand-keys.
- To execute the absolute binary object program:
. (1) Load the object code absolute binary
o paper tape using the hardware initial
o instructions.
\ . .
L v
L (2) If the AUT option was specified, i.e.
.~ Self-triggering |, execution of the object
N program occurs following (1), otherwise
Ll trigger to the entry point provided
using the hand-keys.
!
r 1]
L.
i
|
L
_

Reference 3.2
Page 112
Version /Date 1
“Author L Grant

ROYAL AIRCRAFT ESTABLISHAMENT
920C CONAL COMPILER
USERS, MANUAL

]

1.

T

,_

M

C =

[

|

I

R

DIAGNOSTIC PROGRAMS

This section provides the operating instructions
for the use of the Diagnostic Programs supplied
with the 920C CORAL Compiling System.

For a description of the Diagnostic Programs
see 2.2. _ '

(—

1]

BAP

" Reference 3.2.1

Page 113
Version/Date 1
Auﬂmr L Grant

ROVAL AIRCRAFT ESTAGL iQH?’iENT

9200 CONAL COMPILER
USERS ‘M‘ANU&L

S

]

]

rm
!

— —
L e s

-

3.2.1

COMPILER. DATA RETENSION

For a description of the Compiler Data Retension .
program see 2.2.,1.1.

Operating Instructions

(1) Load the Compiler Data Retension Program
' binary paper tape using the hardware
initial instructions.

It is self-triggering.

An * will be output on the teletype as
an invitation to type.

(2) Type the option command on the teletype
~according to the requirements (3.2.1.2).

An * will be printed on the teletype as
an invitation to type.

(3) 'If the option was RST place the paper tape
- containing the dumped compiler tables in
the paper tape reader.

(4) Type the activation command GO,) .

(a) If the DMP option was specified
- a paper tape containing the dumped
compiler tables will be output on
the punch,

~or (b) If the RST option was specified
the paper tape containing the
dumped compiler tables will be
read and reset in their original
. positions in the 920C core.

-

1

1

RS

ROYAL AIRCRAFT ESTABLISHMMENT

USERS M%NUAL

Reference 3,.2.1.2

Page 114
Version/Date 1
Author L.Grant

]

S

]

—
el

e
| —

1

N

[

COMPILER DATA RETENSION

For a description of the options see 2.2‘1;2.

3.2.1.2 Optibn Commands
COMMAND | PARAMETERS | DEFAULT MEANING

DMP Compiler Table Dump required:
YES Yes o
NO NO No
v = YES

RST . Compiler Table Restore required:

' YES Yes |

NO NO No
v = YES

Obviously DMP and RST cannot be specified together.

5 Reference 32.2
ROVAL AIRCRAFT ESTABLISHMENT)

For a description of the format of the
output see 4,2.2,

(4) For re-use of the Object Dump Program go to
(2).

[Page 115 |
J 20C CORAL COMPILER | :
) §20C COTAL COMPILER ' Version/Date 1
. USERS. MANUAL Author L.Grant 1
. - .
N !
3.2.2 OBJECT DUMP -
r ’ !
| - !
D For a description of the Object Dump Program -
see 2.2.2.1.)
]
]! 3.2.2.1 Operating Instructions o
— (1) Load the Object Dump Program binary paper tape 1
o - using the hardware initial instructions. -
L . . i
It is self—triggering. -
I}
\= |
P An * will be output on the teletype as an o
_ invitation to type.
rj‘ . . s’
|| (2) Type the option commands on the teletype ¥
according to the requirements (3.2.2.2).
-
g é An * will be output on the teletype as an
s invitation to type following each command.
f{ (3) Type the activation command GO }. E
The contents of the specified area of core
[will be output. 7

TPy

T

1

I

ROVAL AIRCRAFT ESTABLISHMENT

$20C CORAL COMPILER

USERS PMARNUAL

Reference 3.2.2.2
Page 116

Version /Date 1

Author L Grant

]

[P

OBJECT DUMP

For a description of the options see 2.2,2.2.

3.2.2.2 Option Commands
COMMAND PARABMETERS DEFAULT MEANING
ouT Output device for dump
. PTP Paper tape Reader
TTY TTY Teletype

RAD User Interface Input

number radix
8lo .Octal
128(=;Olo) 1010 Decimal

MOD 0 -~ 5 0 Core Module Nd.

STA 0—8191lo o] Module relative start
address of core to be
dumped

FNA 0-8191, 0 Module relative finish

: . address of core to be
dumped

1

o
K-

SN

(BTN

Reference 3.3
’ Page 117

Version /Date 1

Author L Grant

ROVAL AIRCRAFT EWAEUSHMENT
$2GC CGRAL CORIPILER

USERS MANUAL

3.3

MISCELLANEQUS NOTES

The following is a collection of useful information
which does not logically fit in any of the above
sections. :

EER

Reference 3.3.1 .

2 AIRCRAFT ESTABLISHMENT 1
ROYAL cR SHIMENT Page 118 Ny
) 820C CORAL COMPILER Version/Date 1
LEER§,§Q§UAL - Author L Grant H?
-1 ~

3.3.1

PAPER TAPE OUTPUT SEPARATION

If the paper tape punch runs out during the output
from the programs of the 920C CORAL Compiling
System it is normally acceptable, although perhaps
undesirable, to stop the program,runout some
blanks, reload the punch, and continue thus
separating the output onto two paper tapes. The
following list describes where it is acceptable

to split tapes:

(1)
(2)

(3

(4)
(5)
(6)
(7)

Output:

Macro Pass -

Pass 1A T
Pass 1B . '?
Pass 2 | -
Loéder, -

. Compiler Data-
Retension
Object Dump =

source

" intermediate

code
intermediate

" code

relocatable
binary
absolute
binary
compiler
tables

core dump

~are significant

Yes

Tape can be split:
Yes, i.e. blanks

are not significant
Yes
Yes
Yes

No, i.e. blanks

Yes

[

. !
- |

oLl

S

T

T
J—

. Reference - 3.3.2
ROYAL AIRCRAFYT ESTABLISHMENT - .

Page 119
920C CORAL COMPILER - .
) : Version/Date 1
USERS MANUAL - - Author L Grant

R
i

COMPILER DATA SPACE OVERFLOW

If compilation halts with errors 20 or 100, the
920C core store has become full on compilation

due to the unit of compilation being too large

or too complicated. The following suggestions

may help to overcome the problem:

(1) Split the unit of compilation into several
segments and compile them individually or
if it is a Library unit split the procedures
into several units.

(2) Reduce identifiers to between 1 to 3
characters, particularly procedure names
if the error occurred in Pass 2. (This
may easily be effected by redefining the
names with macro definitions).

(3) ©Split any declaration which has a large
- preset list into several declarations
thereby reducing the number of presets
per declaration. (The split declarations
may be overlaid with the original declaration
-for access). '

(4) Remove presets altogether and initialise
at runtime. '

NOTE: If the store space is exhausted during
execution of the Macro Pass the source
probably contains a recursive macro call.

Reference 3.3 3

Page 120
£20C RAL COMPILER ' ;
¥ CORA Version /Date. 1
L»GrantA

USERSiW%FUAL. : - Author

3.3.3

COMPILER INPUT CHECKSUM CALCULATION

Although the input to each compiler program is

" line buffered the checksum accompanying the

input is not and it exists as the checksum of
the whole tape. Warning 2 is produced if on
reading the tape the calculated checksum
disagrees with the value on the tape. However,
since this check is not performed until

the whole tape is read a mispunch may cause

the compiler program to fail in an undefined
way. :

b d

i .4
P |

b\ 7o - ' ' Reference
M En : ROYAL AIRCRAFT ESTABLIDHMENT
L ' a ‘Page 121
g P {"; 4\. 4 0:}[‘ "Er\ s N
VZOC CORAL COMPILER VerSion/Date 1

f? Usﬁﬁsﬁﬁﬁwgég Author 1. Grant
- i :
™
(‘ CHAPTER 4
- DIAGNOSTIC OUTPUT
M 4.1 COMPILER PRCGRAMS
o :

4.1.1 MACRO PREPROCESSOR
M 4.1.1.1 Error Messages

~4.1.1.2 Warning Messages
) 4.1.2 PASS 1A
N 4.1.2.1 Error Messages
- 4.1.2.2 Warning Messages
. 4.1.3 PASS 1B
0 4.1.3.1 Exrror Messages
. _ 4.1.3.2 Warning Messages
- 4.1.4 PASS 2
B 441.4.1 Error Messages
e 4%1.4.2 Object Map
- 4.1.5 LOADER -
. 4.1.5.1 Error and Warning Messages
- 4,1.5.2 CTore Utilisation Information
| 4.2 DIAGNOSTIC PROGRAMS
' 4.2.1 COMPILER DATA RETENSION
3 4.2.2 OBJECT DUMP
f 4,3 FLOATING POINT LIBRARY PROCEDURE
L : _ ; \ ‘ ;
4.4 MISCELLANCOUS NOTES

L 4.4.1 COMMAND ERRORS
L

3

Reference 4

[—

I v
L 34 E LISHMERNT
L @._5&_4 | ROYAL AIRCRAFYT ESTABLIS | Page 122
i ™ E $Y:4 s
. §20C CORAL COMPILER Version /Date 1

. USERS RAANUAL Author L Grant
{ : -
B |
!f" 4 DIAGNOSTIC QUTPUT

‘ This chapter describes all the diagnostic output produced
) by the programs of the 920C CORAL Compiling System, e.d.
Ej error messages, core maps, etc. An explanation of the

' method of production and use of the information from each
. - program is described by the equivalent sections of
L Chapter 2.
L
g
|
o
Ly
N
m
L
L
n
jf !
L
L
.
L
‘)
L

CAP

. 5‘ ' Reference 4.1
ROYAL AIRCDAFT ESTARLISHRMENT

§1 Page 123
& $20C CORAL CON : -
20T CORAL CORMPILER Version/Date 1
= USERSEﬁﬁmgﬁl Author L Grant
- - b
. 4.1 COMPILER PROGRAMS
U The format of an error/warning message from the Macro
- Pass, Pass 1A and Pass 1B is:

E/W na AT (nb : nc) (nd : ne)

where
na Error/warning number
nb Number of line in which error starts
nc Number of character within line na where
error starts
nd Number of line in which error finishes - Not present
ne Number of character within line nd where if a

character
error.

error finishes

It must be noted that the line numbers precduced by the
Macro Pass refer to the original source and those
produced by Pass 1A and Pass 1B refer to the expanded
source from the Macro Pass. It is assumed that there are
offllne faCllltJeS for listing these files.

The format of an error message from Pass 2 is simply:
E na

The format of any other messages are described in the
relevant sections below.

j

a R Reference .1 -
- M\P ROYAL AIRCAAFT ESTABLISHMENT 4.1.1 A
D il : Pagr.s~ 124 4
in‘ . £ e g oy \ mome - Al . *
: O CORAL COMPILE .
i CHAL Q IFILER _,Verslon/Date 1 ‘
Tﬁ '?5EES¥WAN”%F Author L Grant 7}
oK N
- 3
L s
~ 4,1.1 MACRO PREPROCESSOR }
. 4.1.1.1 Error Messages
]
L) o
_ NUMBER MEANING RESULT
™ ‘g
L 1 Parity error on input Character ignored. =
' , Processing continues.
™ . il
L 4 Invalid keyword Character ignored }
C ' until next symbol. .
- Processing continues. N
| -5 No (in 'LITERAL' | u }
7 No) in 'LITERAL' "
| 8 No (in 'OCTAL' " !
- 9 String too long, i.e. -
= >630 characters " Y
L) 10 Invalid use of + " .j
. 11 Invalid character after .
b ¢ in string " ;
- 12 Invalid number following i
FA 'X' non-printing v
LN character in string, i.e - 3
’ not between O and 127. " :
f 13 -No ! after non-printing
5 character in string " j
14 No) in 'OCTAL' v
[)
| 15 Invalid character after. z
L. : ! in literal : " 3
[16 No ! after non-printing ,
| character in literal " g
20 . |920C core store full on |Compilation halts -
(! - compilation - unit of (See 3.3.2) .
L _ compilation too large : g
, 21 A macro call with an The macro is not)
B incorrect number of expanded & the next \
L parameters, i.e. it symbol that is ;
does not correspond analysed & output is ’
o to the definition the first symbol
U ' following the next)
semi-colon i

" Reference

- 4.1.1.1
r‘j @Z&F ROVYAL AIRCRAFT ESTABLISHMENT R
?:,1 ;) Page 125 ‘
L j - CORAL APILE .
$20C CORAL CORMPILER Version /Date 1
g USEﬁsﬂﬁﬁNgéL Author L Grant
- g
— 4.1.1.1
N (cont.)
L) i .
. NUMBER MEANING RESULT
r
| 22 'DEFINE' or 'DELETE' is | No action is taken &
not followed by an no further output is
M identifier produced until the
|| next semi-colon has
_ . been read .
f} 23 Two identical formal The definition is not |
L parameters in the accepted and no outpuy
same macro is produced until the
M definition next semi-colon has
u been read
= 24 A macro definition or This has no effect on
L deletion is not | the operation of the
o followed by a semi- directive but no
- colon : analysis is performed
j & no output produced
- until the next semi-
colon symbol has been
[read
- 25 Request to delete a No -action is taken.
o non-existent macro, or Processing continues.
§ a macro that cannot be '
o deleted because it is
either an active macro
m or the name of a formal
L parameter of an active
: macro. i '
| 26 Error in the format of | The macro is not
- : an actual macro expanded & no output
parameter or analysis occurs
. until the next semi-
L colon is read.
‘ 27 Error in the syntax The definition is not
' of a macro definition, accepted & processing
C either the parameter is not resumed until
list is wrong or the the next semi-colon
macro body is not has been read.
o present,
28 . | Attempt to define a The definition is not

|
[

macro with the same
nane as an active macro
"or a formal parameter
of an active macro

accepted & processing
is not resumed until
the next semi-colon
has been read.

Reference 4,1.1.1

gt

M ME@ ROYAL AIRCRAFET ESTABLISHMENT) ™
= ' : Page 126 . i
| : 920C CORAL COMPILER Version/Date 1 .
'i - USERS Mﬁ?ﬂ}ﬁx; Author L Grant j
§
n 4.1.1.1 “'}
|| (cont.)]
o NUMBER MEANING RESULT -
|)
‘ 100 A compiler data area is |Compilation halts
f. full - unit of (See 3.3.2) .
8 compilation is too j
s large or too complex >
| 2500 Compiler consistency Compilation halts B
L error. i
{
L i
sead
B -y
L]]
!
L,J j
M 3
L |
r’*i b
1 }l
y
o
I L
8 |
a
U 1
R
L ;
] .
4 ‘jx
B)
- {
A
Pl
i)
j
a \

') ' Reference 4.1.1.2
@@@ ROYAL AIRCRAFT ESTABLISHMENT

Lo . Pl o 2 0 ‘y: P . -
H . 820C CORAL COMPILER Vers1on/Date i
ﬂ _ USER ussﬁ&U&L - Author L Grant
1
MACRO PREPROCESSOR
™
. 4.1.1.2 Warning Messages
! | NUMBER MEANING B D RESULT
FT . _ 1 Illegal CORAL character |Character ignored,
L ’ | processing continues.
[*2 Checksum failure on Processing continues
. input (if option
specified)
ﬁ . X . .
i 3 Input buffer full, Processing continues.
: i.e. more than 120 (A character may be
r characters on a line lost).
M
L
Lo - * Output of warning 2 is often caused by the output
of other error or warning messages even 1f there

{i is no checksum failure.
§
LS - »

|

|
L

ROYAL AIRCHAFT ESTABLICHMENT -

Reference - 4.1.2

E} _ Page 128
120C CORAL COMPILER .
3%‘3&; CONAL COMPILER Version/Date 1 ,
[s - B oA ALk o g
{’ USERS-MARUAL Author L Grant 3
B g 1
m PASS 1A ”3
I ’ ¥
Y 4.1.2.1 Error Messages
i]
- NUMBER MEANING RESULT
1 Parity error on input Character ignored. 4
‘ |Processing continues.
. : }
4 Invalid keyword Characters ignored ”§

5 No (in 'LITERAL'

No) in 'LITERAL'
No (in 'OCTAL'

9 String too long,
i.e. >630 characters

10 Invalid use of +#

11 Invalid character
after ! in string

12 Invalid number

following 'X' non-
printing character in
string, i.e. not
between O and 127

character in string

14 No) in 'OCTAL'

15 Invalid character after
! in literal

" 16 No ! after non-printing
‘ character in literal

290 920C core store full on
compilation
(compilation halts
|because unit of
compilation is too
large)

13 No ! after non-printing

until the next
terminator which is
usually the next semi-
colon. Processing
continues.

_Compilation halts:
(See. 3.3.2)

Ve

A g

.

[

Ggmttisin ¥

bnn ot

A N

L.

ROYAL AIRCRAFT ESTABLIBHMENT

$20C CONAL COMPILER
USERS MANUAL

Reference 4.1.2.1
Page 129
Version/Date 1

Author I; Grant

]

-

NUMBER

MEANING

RESULT

21

22
23
24

25
26
27
28
29

30

32

'FIXED' not followed
by (

Specification of
total bits not an
integer ‘

Specification of
total bits not
followed by a comma

Specification of
fraction bits not a
signed integer

'PIXED' specification
not concluded by).

Exponent not a signed
integer

'BYTE' not followed
by 'ARRAY' -

'CODE' not followed
by 'BEGIN' ‘

'BITS' not followed
by [

Field width
specification in
operation not an
integer '

'BITS'

Field width
specification in 'BITS'
operation not followed
by a comma

Bit position
specification not an
integer

Characters ignored
until the next
terminator which is
usually the next semi-
colon. Processing
continues. -

"

it

H

f

=

BAP

ROYAL

AIRCRAFT ESTATLISHMENT

w

20C CORAL COMPILER

USERS MANUAL

Reférence 4.1.2.1
Page 130 |
Version /Date 1
Author L Grant

L

P

)

e

]

-]

Pr—

r

]

P—

7]

—

e

4,1.2.1
(cont.)

.NUMBER

MEANING

RESULT

33

34

35

36

37
38

39

40

41

42

'BITS' specification
not terminated by]

Invalid symbol,
commonly an error
in a number format

Integer too large
i.e. <—l3lO7llo

>+13107l10

> 177777
;(See 1.1.3.3)

Total bits in 'FIXED'
specification greater
than 18, or in 'BITS'
or 'UNSIGNED!'
specification greater
than 17.

Fractional bits in
'FIXED'specification
outside range +1023

Real number too large
to hold in two-word
floating format

Invalid CORAL structure

{variable not followed

by assignment symbol
where expected

'PROCEDURE' not followed
by an identifier

'GOTO' not followed by
an identifier

Characters ignored
until the next
terminator which is

usually the next semi-|

colon. Proce551ng
continues.

on

U iree

il

3
i
e

el

[

. 4
Eoom——r|

]

.. :

[o

,.
LYS—

[SO——]

[P

. q.»/-

S I)

X

E‘ . ' ‘Reference 4.1.2.1
@ i? ' ROYAL AIRCRAFT ESTABLIGHMENT
| | Page 131

]

—

r“ Ty

§20C CORAL COMPILER Version/Date 1
USERS MANUAL " Author L Grant
4,1.2.1
(cont.) _
NUMBER MEANING RESULT
43 Switch or array has tco |Characters ignored
many subscripts until the next

terminator which is
usually the next semi-
colon. ProceSSLng
continues.

44 Condition not "
followed by "THEN '

45 'OVERLAY' not ' "
followed by an
identifier

46 Right hand bracket of "

one-dimensional array
element missing in
overlay declaration
47 Base of overlay has "
more than one subscript
or overlay declaraction
does not contain 'WITH'

48 'SWITCH' not followed
: by an identifier

49 'SWITCH' ID not - "
followed by an . e
assignment symbol

50 '"TABLE' not followed o "
by an identifier

51 'TABLE' ID not . "
followed by [' ’

52 Error in table 51ze : "
specification

53 Table size ")

. specification not

concluded by 1]

- 54 Table declaration not*
followed by [

55 Error in preset constant "
list

]

.

; | - ' Reference 4.1.2.1
/6 ROVAL AIRCHRAFT ESTAGLISHMENT : 132

1

—

T

e A

—

=
S

3
_ . Page J
820C CORAL COMPILER Version /Date 1 .
USERS MANUAL Author L Grant |
Pl ""z
s
4.1.2.1 ‘
(cont.) 3
NUMBER MEANING RESULT A
. ~ ™
56 Identifier list not Characters ignored j
present in " Juntil the next
declaration terminator which is

usually the next semi=~
colon. Processing
continues.

57 Integer expected and "
not found '

58 Subscripts not - "
terminated by]

59 Procedure actual "
parameters not
separated by commas,
orno closing bracket
on procedure call or

declaration

60 |Assignment symbol not "
present in 'FOR' :
statement

61 'DO' not present in - "

'FOR' statement

62 '"UNTIL' not present "
~ {in 'FOR' statement

63 Conditional expression - "
‘1does not contain 'THEN'
in correct position

64 No 'ELSE' in conditional o
expression

65 Array declaration with : "
incorrect bounds '
specification

66 Unmatched parentheses in "

v expression
€7 Incorrect structure - ’ "

following 'LOCATION'

iy

et

tnd

-t

>

LS

S

S

bosd b

~;,_,_..‘,) k..--z.l

N st

v

(R

)

]

AR

ROYAL AIRCOAFT ESTABLISHMENT

920C CONAL COPAPILER
USERS MANUAL

Reference 4.1.2.1°

Page 133

Version/Date 1
Author I, Grant

(cont.)

4,1.2.1

NUMBER

MEANING

RESULT

68

69

70

71
72

73

74
75

76.

78

.'Typed expression not

enclosed in
brackets

Invalid primary

Open sguare bracket
missing in anonymous
reference, or invalid
structure to word
reference

] missing in anonymous
reference

Illegal syntax in code
statement

Number type
specification in
procedure parameter
specification neither
followed by 'ARRAY' or
'PROCEDURE' nor preceded
by 'VALUE' or 'LOCATION'

Error in specification
of procedure parameter

Exrror in table field
specification

Total bits not specified
in table field
specification

Table preset list not
terminated by]

Too many arguments to
operator. Most
operators have a general
limit of 31 arguments

Characters ignored
until the next
terminator which is
usually the next semi-
colon. Processin
continues. :

L]

N o _ ' Reference 4.1.2.1
= ROYAL AMCRAFT ESTADLISHMENT a :)
L] Page 134

$20C COTAL COMPILER : |
. ’ ’ CorE Version/Date ' 1
M USERS, MABUAL Author L Grant
- ’
[a i
|
- 4,1.2.1
re
L (cont.)
o NUMBER MEANING RESULT
n ‘
L 79 Illegal bit position Characters ignored
in table element or until the next
- 'BITS' operator terminator which is
L usually the next semi-
' -colon. Processin
) continues. :
w 80 Compilation unit name "
. not present
i
Lo 81 '"COMMON' ID not "
followed by (
r
L 82 'CORAL' not found at "
start of pregram
M
| 83 Source tape not : "
~ terminated by 'FINISH'
ISR
}; 84 Unrecognised syntax "
Lo ' structure to program
, element
] '
L 85 Common list not "
terminated by semi-
- colon
(|
86 Un-named segment within "
() compilation unit
[.
- 87 Segment is not a block "
L 88 'OVERLAY' ID 'WITH' not n
- followed by declarations
P 89 Invalid table field "
- description
i " 90 |Incorrect termination "
L to table field
C 91 Unrecognised construction "
. in library
i specifications
92 Unrecognised construction "

in declarations

{ ‘, Reference
@ : @ ROYAL AINCRAFT ESTLBLISHMENT 4.1.2, l-
= L : Page 135
b 20C CORAL COMPILER , .
& . 8 - e Version/Date 2
- USERS Fﬁg:sum Author L Crant
D
| 4.1.2.1
{“ (cont.)
i NUMBER MEANING RESULT
B 93 | Semi-colon missing Characters ignored
L before procedure until the next ’
- body, or procedure terminator which is
j body statement usually the next seni-
missing ' colon. Processing
continues.
r ‘
@ﬁ 94 Attempt to preset "
table
- specification
B 95 |Illegal separator "
. between CORAL
L structures
L
) 96 On compilation of a "
o single segment source, .
- the two occurrences of
the segment name are
“ | different
L |
‘ 97 Code statement used "
r outside code block
. -
= 98 Invalid CORAL o
, compilation unit
- 100 A Compiler data area Compilation halts
- is full - unit. of (see 3.3.2)
f compilation is too
L large or too complex
- 152 Library procedure Characters ignored
P I number cannot be 1 until the next
o terminator which is
usually the next semi-
b colon. Processing
- continues.,
> 500 Compiler consistency Compilation halts

error

Mo] L o Reference 4.1.2.2
ROYAL AIRCRAFYT ESTABLISHRIERT) e
= : Page 136
L 2200 CORAL COMPILER . -
= . ~ e Version/Date 1
ERS MAAL ’ -
— ' USHR°=§SE§5L Author L Grant
r PASS 1A | |
4.1.2,2 Warning Messages .
= :
‘ (
NUMBER MEANING RESULT -
m]
i - :
¢ 1 Illegal CORAL character | Character ignored.
- ' in source : ' Processing continues ”7
i‘ *2 Checksum failure on Processing continucs -3
7 input (If option -
M specified) g
L]
3 Input buffer full, i.e Processing continues.
= more than 120 (A character may be 3
;j characters on a line lost). ‘ o
f; -
L
N * Warning 2 is often caused by the output of other h
L error or warning messages . even if there is no
‘ checksum failure, -
N i
Lo
[)
- -
O
L
.
]
L
L

4.1.3

: i\yo . ' Reference
— = ROYAL AIRCRAFT ESTABLISHMENT
il : . L Page 137
-y Q300 CORAL CHReaDIl B0 .
=) . el CORAL COMPILER Version /Date 1
N USERS MANUAL Author L Grant
. - . :
|
r 4.1.3 PASS 1B
| 4,1.3.1 Error Messages
M
NUMBER MEANING RESULT
(_‘“ﬁ
. 1 Parity error in input Character ignored.
- Processing continues.
Lo 20 920C core store full Compilation halts.
- on compilation - unit (See 3.3.2)
L of compilation is too
L large
o 85 Common list not Characters ignored
() terminated by semi- until the next
colon terminator which is
- usually the next semi-~
i; colon. Processing
” continues.
- :
. 86 |Un-~named segment "
L within compilation
unit
3 :
L 87 - |Segment is not a "
block
| 88 'OVERLAY' ID 'WITH' "
not followed by
. declarations
89 Invalid table field "
L ' description
P
- g0 Incorrect termination "
, to table field.
_ g1 Unrecognised "
construction in library
[specifications
. 92 Unrecognised "
[' construction in
o declarations

(-

-0

]

twice at the same block
level . :

: _@ Reference 4.1.3.1 b
o @ : E) ROYAL AIRCRAFY ESTARBLISHMENT - ;
T ' Page 138 i
QPN O 6T Tl E)
820C CORAL COMITILER V@mmn/Dme'l N
1 USERS. RIANUAL Author L Grant j
by g
4.1.3.1
{(cont.) _&
| NUMBER MEANING RESULT o~
93 Semi-colon missing ‘ICharacters ignored
before procedure body, until the next -
or procedure kody terminator which is
statement missing usually the next semi- 7
' colon. Processin -~
continues. . :
94 |Attempt to preset "
a table -
specification By
95 Illegal separator "
between program
elements
96 On compilation of a " N
single segment source, -
the two occurances of
the segrment name are
different
97 Code statement used "
outside code block
98 Invalid compilation "
unit. The source is not
recognised as a CORAL
compilation unit
100 A Compiler data area is |Compilation halts
full - unit of (See 3.3.2))
compilation is too
large or too complex
102 Label declared twice' Characters ignored
' at same block level until next
: terminator which is
usually the next semi-
colon. Processing
continues.
103" Identifier used as "
both label and variabkle
within the same block
104 Variable declared "

I3

]

(BTN

ROVAL AIRCRAFT EST?’ABUSHMEMT

G200 CORAL COmPULER

USERS. MAMNUAL

Reference - 4.1.3.1

Page 139
Version/Date 1

Author L Grant.

——— P
[P

|
L

4.1.3.1

(cont.)

NUMBER

MEANING

RESULT

105

106

107

108

109

110

111

112

113

114

‘than 62 levels within

Variable used prior to
its declaration at
the same block level

Undeclared variable:
has same name as a
label used or
declared in an outer
block

The block nesting has
been carried to more
than 63 levels, or more

a procedure

A declaration of a
prespecified entity
does not agree with the
specification

An answer is not given
in a procedure that
requires one

Nesting of procedures
has been carried to more.
than 31 levels

A procedure has more
parameters on declaration
than it had on
specification

In an array declaration,
the lower bound is greate
than the upper bound

An attempt has been made
to overlay in a segment
a variable declared in
common

Attempt to overlay a
table element

Characters ignored

until the next

terminator which is

usually the next semi-

colon. Processin

continues.

"

"

T

]

f

ROYAL AIRCAAFT ESTABLISHMMERNT

8200 CORAL COMPILER

USERS MANUAL

Reference 4.1.3.1
Version/Date 1

Author

L Grant

T

.

4,1.3.1
{cont.)

NUMBER

MEANING

~ RESULT

115

116

117
118
119
120
121

122

123

124

125

126

Attempt to overlay a
two~dimensional
Array

Attempt to overlay
a procedure

Attempt to overlay a
non-value procedure
parameter

Attempt to oVerlay an
ut-of-bounds array
element

11

Too many items in table
preset list

Too many items in preset
list

Table element is out
of bounds

Attempt to preset where
this is illegal

Declared procedure
parameter is not the
same as specified
procedure parameter

A procedure has more
parameters on
specification than it
had on declaration

A procedure has more
than 30 parameters

A fixed procedure does

not have the same scale -

on declaration as it had
on specification

Characters ignored
until the next
terminator which is

usually the next semi-

colon. ProceSSLng
continues.

"

"

G iiadh

}
a4

b

L2

£

ROVAL AIRCRAFT ESTABLISHMENT

| $20C CORAL COMPILER

USERS MANUAL

Reference 4.1.3.1

Version/Date 1

Author " L Grant

NUMBER

MEANING

RESULT

127

128

129
130

131

132

133

134

135

136

A procedure does not
have the same type on
declaration that it had
on specification

A procedure specified
as library is declared
in a segment

An attempt is made to
overlay a switch

An expression contains
non-data references

Conflicting number of
dimensions between
array or switch
references

A data reference is not

found where a word or
partword reference is
required

A partword reference
is found where a word
reference is required

An arithmetic expression
does not have an
arithmetic value,
probably because it
contains references to
labels, arrays, untyped
procedures, etc.

A typed primary is not
found whexe one is
regquired

A floating type primary
is used as an argument
to a word logic operator)
or on the left hand side
of a shift cperator

Characters ignored

until the next

terminator which is

usually the next seni-

colon. Processin

continues.

"

L

A

J

*

ROYAL AIRCRAFT ESTABLISHMENT

820C CORAL COMPILER
| USERS MANUAL

Reference
Version/Date 1
Author

4.1.3.%

I, Grant

1

1

r;;A

L~

L~

(cont.)

4.1.3.1

NUMBER

MEANING

RESULT

137

138

139

140

141

142

143
144

145

The argument to 'AND'
and 'OR' operators are
not conditions

A non-value actual

does not match the
corresponding formal in
type and scale

The number of formal
parameters at a

:procedure declaration
'is not the same as the
‘nunber of actual

parameters used at a
call.

The argument to a
'GOTO' is not a label
or a switch element

An answer is given for
a procedure that does
not require one, or
'ANSWER' occ¢urs outside
a procedure. : '

The address field of a
code statement is out
of range

Illegal function field
of a code statement

'IF' nct followed by a
conditicon

An identifier used as a
procedure is not a
procedure

parametexr to a procedure

Characters ignored
until the next
terminator which is
usually the next semi-
colon. Processin
continues. '

1"

1

RV

HOVAL AIACHAFT ESTABLIGHMENY

920C CORAL COMPILER

USERS MANUAL

eference 4.1.3.1

Version/Date = 2
L Grant

B i

]

(cont.)

4.1.3.1

NUMBER

MEANING

RESULT

146

147

148

149
150
151

153

2 500

The address part of a

l unsubscripted array

code statement is not
a constant address

An overlay declaration
the base of which is an

would result in a
negative overlay
address

Library procedure
number not found where
reguired or found on a.
non-library procedure

Library procedure
number too large

A compilation unit
contains references to
unset labels

A word reference is
invalid

Fixed scale of procedure
parameter at declaration
does not correspond to
scale at specification.

Compiler consistency
error :

Characters ignored
until the next
terminator which is
usually the next semi-
colon. Processing
continues. ‘

Li]

Compilation halts

i\jo - Reference 4.1.3.2
ROYAL AIRCRAFT ESTABLISHRMENT . .
= 144 3
LJ : L Page ,;
' _: $20C CORAL COMPILER Version/Date 1
: o AARMUS
(} ; USERS WM/ %pﬁf“ Author . L Grant T
B : -
] 3
— PASS 1B y
| : ';
) 4.1.3,2 Warning Messages -i
I
I . :
’ NUMBER MEANING RESULT 4
{ﬁ 1 Iliegal CORAL character |Character ignored. g
- |'in source Processing continues. e
r——ﬂ : ‘ g
L * 2 Checksum failure on Processing continues. !
: input 4
i 3 Incorrect tape Processing continues. "
L) o :
) 4 Rescaling operation Processing continues.
[to floating point
Ll format invoked by
Compiler (if option
r specified) N
L , :
- 5 A procedure is called Processing continues -
- within itself or
} within a nested
- ; | procedure.
.
L
;} * Output of warning 2 is often caused by the
output of other error or warning messages even .
R if there is no checksum failure.
L
L
|
L

T

ROVAL AIRCRAFT ESTABLISHMENT

€20C CORAL COMPILER
(USERS MANUAL

Reference
Page 145
Version/Date 2

Author L Grant

—
L

4.1.4.1

PASS 2

Error Messages

NUMBER

MEANING

RESULT

20

200

203

202

2500

Parity error on input

A shift instruction

of more than 36 places
generated on a normal
shift, rescaling,
multiplication or
division operation

Overflow or underflow
on fixing a real
constant (Note that
there is no error check

for overflow or under-

flow on floating a
fixed constant but this
is unlikely to happen)

920C Core store full on

‘compilation - unit of

compilation. is too
large

A Compiler data area is
full - unit of
compilation is too
large or too complex

Checksum failure on
input

Input to Pass 2 when
erxrrors in Pass 1

Consistency error.

Compiler consistency
error.

Compilation halts

(See 3.3.2)

(See 3.3.2)

ol

i

-

]

BAP

‘ ‘ Reference 4,1.4.2
ROVAL ATRCHAFT CSTABLISHMENT
o 2 p 08 .. o
920C CORAL COMPILER Version /Date 1
- A, £ 2% £
USERS vrw?'.éf.i??.—-ﬂ. Author L Grant

,‘_,-

]

"
[

__.AMN

4.1.4.2

Object Map

The object.map is an option which provides a map of
the object code as it is produced from the Compiler.
All addresses of object code items are given as
addresses relative to their relevant absolute bases
which are provided by the Loader when the object
program is loaded (4.1.5.3).

The following information is produceds

(1)

(2)

(3)

(4)

The name of the compilation unit:
PROGRAM ~name

or LIBRARY name

The name of each section within the compilation
unit: '

_ COMMON name
or SEGMENT name
or LIBPROC name/no.

The relative address of‘each data aeclaration
preceded by 'D':

D decimal octal data
-address address name

The address is relative to the segment data
or common data base according to the type
of data declaration. ‘

It must be noted that the address output for

a table element is always the address of word
O of the table.

The relative address of each label declaration
preceded by 'L': S :

L decimal octal label
address . address name

The address is relative to the segment code
base in which the label is deciared.

-

]

CAP

ROYAL AIRCRAFT ESTABLE@H:’%‘?ENT
‘ Page 147

BC CORAL COMPILER Versi
§20C CORAL COoMPILE Version/Date 1

USERS MARUAL

]

—n

PO,
T i

[—

BN AN
0 -
e
[=N
~ N

The relative address of each switch array
declaration preceded by 'S':

S decimal octal switch
address address name

The address is relative to.the segment switch
base in which the switch is declared.

The relative address of the link and entry
point of each common or internal procedure
preceded by 'D' and 'P' ‘respectively.

D decimal octal = procedure (Link)
address address name '

P decimal octal procedure (entry
address address name point)

The link address is relative to the segment

data or common data base according to the type
of the procedure.

The entry point address is relative to the

segment code base in which the procedure is
declared. '

It must be ncted that for internal procedures
the link and entry addresses are output on the
procedure declaration whereas for a common
procedure the link address is output on the
specification and the entry address is output

on the declaration. No such information is
cutput on compilation of a Library procedure
since they are handled differently by the
Compiler and loader. The necessary information
can be obtained from the Lcoader core utilisation

~information (4.1.5.2). :

Reference 4.1.4.,2

Author L Grant

An example CORAL program with its corresponding
object map is supplied in Appendix E.

il

r

S

(ETANEY

BOVAL AIRCRAFY ESTABLISHMENT

©26¢ CORAL COMPILER

USER$F@&%QAL

Author

Reference 4,1.5
Page 148
Version/Date 16/2/76

Various

"LOADER

Error and Warning Messages

_The following messages are printed on the teletype on

occurrence of the respective error conditions when the
normal lcader is in use.

NUMBER

MESSAGE

MEANING

RESULT

COMMAND
ERROR

CHECKSUM
FAILURE

THIS
LEVEL
ALREADY
LOADED

LIBRARY
LOADED
ON THIS
LEVEL

NOT ALL
LEVELS
LOADED

| An invalid message

has been typed.

(If the message is
output after

typed GO), it
indicates that one
of the commands
previously input
is invalid in a
way that cannot be
checked earlier).

Checksum failure
on input of paper
tape

_An attempt is
being made to
load programs on
a level on which
loading has
already been
terminated

An attempt is
being made to
load a program
tape after a
library tape has
been loaded on
the current
level

An attempt is
being made to
terminate the
loading cf a

Awaits input of
correct command,

r4 .
& type GO.‘)

Loading halts

Awaits
input of next
tape

The tape is
rejected. Awaits
input of next
tape

A new tape is
requested

L 5 : . Reference 4,1.5.1
ROVAL AIRCRAFT ESTABLISKMENT : v
: , i Pagal49
SIS COHAL COMIPILER .
520 e . ER Version/Date 1 v
USERS SAANUAL Author L Grant
4,1.5.1
{(cont.)
NUMBER | - MESSAGE MEANING RESULT
multilevel program
before all four
levels have been
loaded
6 INVALID Probably tape is The tape is
TAPE being loaded rejected.Awaits
forwards instead of input of _
backwaxrds correct tape.
7 Name Common procedure Declarations
DECLARED | has been declared after the first
TWICE twice ' are ignored
(vhere
name is
the name
of a
Common
Procedurej.
'8 NO An attempt is being The tape is
PROGRAM made to load a rejected.Awaits
TAPE library tape before input of
LOADED any program tape(s) program tape
on the current
level
9 CoMMOW Common switch has Declarations
SWITCH been declared after the first
-DECLARED {twice are ignored
TWICE .
10 COMMON Separate units of Loading halts.
CHECK compilation do not
FAILURE have the same
Common
11 CORE If data is being Loading halts,
. FULL loaded module O (see 2.5.1)
is full.
If code is being
loaded modules O
and 1 are full.
12 COMMON Common label has Ceclaractions
' LABEL {been declared after the first
DECLARED |twice

TWICE

are lgnored,

Reference

4.1.5.1

v ROVAL AIRCRAFT ESTABLISHMENT L
’7‘ \S . * " ¥ Page 150 Uk
i SR iy MmaTnS Find Jut
j g;’uJ@ QGH&%L %uu.u?ai-c.sa VerSlOﬁ/Datﬁ 1
5 2 vf,?i}
3 USERS‘%Q%fAL Author 1L Grant i
- i -
| J
- i
; 4,1.5,1 i
(Cont) o
NUMBER MESSAGE MEANING RESULT -
% 13 PARITY Parity error on Loading halts -
FAILURE input :
UNDECLARED References to Loading
) 22 LIBRARY Library continues ™
N PROCEDURES Producedures |
e not yet loaded -
. -
P : a
L UNDECLARED References to Loading <
23 COMMON Common continues
fﬁ PROCEDURES procedures not : -
LJ._ yet loaded .
o
|
L
8 -
L;
B .
L
C

' ' . Reference 4,1.5.2 .
ROYAL AIRCRAFT ESTABLISHMENT

. PagelSl
$206C CORAL COMPILER .
 520C CORAL COMPILE Version/Date 14/2/76
Q f V .
USERS MIARIUAL Author Vavious

S S S

4.1.5.2

LOADER

Core Utilisation Information

The following information is outpuﬁ by the normal
loader as each unit is loaded:

CORE BOUNDS MOL MOU MIlL MU
UNIT NAME

- For each Common and Library procedure declared:

Absolute address of Absolute address of
ENTRY POINT LINK o PROCEDURE NAME

The loading base names‘and their absolute addresses:

COMMON Absolute address
of BASE

DATA ! "

CODE " "

SWITCH | .

The name of each section within the unit (in reverse
order to compilation):

SEGMENT name N

SEGMENT name 1
COMMON name

At the end of loading each unit, any unsatisfied
external procedure references are indicated by the

‘respective messages:

UNDECLARED COMMON PROCEDURES
UNDECLARED LIBRARY PRCCEDURES

Following the loading of all the units of compilation
of the program, i.e. after typing the END directive,
the program entry point 1is printed:

PROGRAM ENTRY absolute address
CORE BOUNDS MOL' MOU' M1L' MlU'

For an example see Appendix E.

Reference 4.2
HOVAL AIRCRAFT ESTABLISHMENT P 152
_ A | age |
oY L+ ¥ X %) N
820C CORAL COMPILER Version/Date” 1
USERS MANUAL Author L Grant

COMPILER. DATA RETENSION

‘Absolute' Absolute Contents Contents Contents

>t

DIAGNOSTIC PROGRAMS

There are no error or warning situations other than the
standard error messages for incorrect user commands(4.4.1).

OBJECT DUMP

There are no error or warning situations other than the
standard error messages for incorrect user commands(4.4.1).

The format of the output of the object dump program for
the contents of each core location is:

address address in in in

in in , decimal occtal instruction
decimal octal : , - form

: N\ o ; Reference '
B fB ’L;}P ROVAL AIRCRAFT ESTABLISHRMENT - 4.3
* e ’ ‘ : Page 153
820C CONAL COMPILER " ‘
. N _ u‘__ N Version /Date 16/2/76
:[; USERS WMATUAL Author Various
s i
R
r§ 4.3 ' FLOATING POINT LIBRARY PROCEDURE
1} ERROR
L MESSAGE MEANING RESULT
L QF2 Floating point undex- Execution continues
) flow, i.e. computed with floating value
1 exponent <-64) of zero (smallest
L value) :
M QF3 Floating point over=- Execution continues
; ~ flow, i.e. computed ~with float%&g value
exponent >63 of +9.2*%10% according to
r (including division sign (largest value)
\
L) or4 Overflow on fixing Execution ccnitinues
a floating numbexr with the largest
[l ’ positive (0l.,..1)OT
L] the smallest negative

e

h——v

C

po
.

QF5 . Underflow on fixing
a floating number

-~ with the wvalue of

(10...0) accerding
to the scale and
the sign.

Execution. centinues

zero.

Trie above error mes
Octal Absolute addr

the error.

- These error messages are always output

to the teletype.

szges sre followad by the
2ss of the Floating Point
interpreted instruction which gave rise o

e o e A AR ASRSTY

1 I

@A

! Reference 4.4
. ROYAL AIRCRAFT ESTARLISHMERT .

Page 154
§20C CORAL CORMPILER Version /Date 1 ’
USERS .MANUAL Author L Grant

4.4.1

" the Compiler Program for input of the correct

.type (2) and (3) .cause repeated output of the

MISCELLANEOUS NOTES

COMMAND ERRORS

Within each program of the 920C CORAL Compiling System
detection of an error in a user input command causes
the following: . :

(1) Output of COMMAND ERROR if a syntatically
‘ incorrect command is input. '

(2) oOutput of COMMAND ERROR after GO is typed if
a syntatically correct command has been input
but the command is not applicable.

(3) Output of DEVICE SPECIFICATION ERROR after GO
is typed if the device specified with a command
is not suitable.

In each case an invitation to type is re-issued from

cormmand follcwed by GOQ if applicable. Errors of

respective message following each option command
input until the correct command is input.

T

T

AV

Reference 5
Page 155 _
Version/Date 1

ROVAL AIRCRAFT ESTABLISHMENT

$2GC CORAL COLIPILER

1 USERS ‘MARUAL o
i! . Aut rAL Grant
ﬁ 5 ‘
B
i CHAPTER 5
f} " OBJECT CODE STRATEGY
(y 5.1 RUNTIME STORAGE ALLOCATION
. 5.1.1 DESCRIPTION |
{ 5.1.2 LOADER GENERATED INFORMATION
= 5.2 DATA SPACE ALLOCATION
[,
i 5.2.1 DATA DECLARATIONS
M ‘5.2.1.1 Data Types
| | 5.2.1.2 Space Allocation
5.2.2 ARRAY/TABLE DECLARATIONS
n 5.2.2.1 Array Types
Ll 5.2.2.2 Space Allocation
5.2.3 PROCEDURE DECLARATIONS
[f 5.2.3.1 Procedure Types
L] 5.2.3.2 Space Allocation
) 5.2.4 LABEL DECLARATIONS
' 5.2.5 STRINGS
\ 5.3 CODE SPACE ALLOCATION
|
| :
s 5.3.1 SWITCH DECLARATIONS
. 5.3.2 STATEMENTS
N
- 5.4 EXECUTABLE OBJECT CODE

5.4.1 GENERAL OBJECT CODE SEQUENCES
5.4.1.1 Data Reference

5.4.1.2 Assignment Statements
5.4.1.3 Dyadic Operators

5.4.1.4 For Statements

5.4.1.5 Conditions

5.4.1.6 Procedure Handling
5.4.1.7 Label and Switch Handling

Reference 5

- BaP »
FAL AINCRAF STABLISHMENT :
@ @ ROYAL AIRCRAFT ESTABLIEMM | Page 156 |
6200 CORAL COMPILER : -
. - 52 sE : Version/Date 1
- Ty S . . s
W USEnS/ Fﬁﬁ?JUia L Author I, Grant
- o "
| .
| el
=
| ‘ i
5.4.2 FLOATING POINT HANDLING ,]
B 5.4.3 OPTIMISATION AND THE PRODUCTION OF EFFICIENT CODH ‘
! 5.4.3.1 Evaluation of Expressions s
5.4.3.2 Low Level Instruction Optimisation -
. 5.4.3.3 Data Access :
5.4.3.4 Miscellaneous Optimisations
- 5.4.3.5 Access of External Information -
5.4.4 MULTI-LEVEL HOUSEKEEPING CODE
M -
Li _
[
L
B -
-
|
-

-

Reference 5
Pann l 5 7

ROGYAL AIRCRAFT ES ':"ASLESHE ERNT

& R QH - 8§
820C CORAL COMPILER Version/Date 16/,, 16

USERS MANUAL Author

Various

-OBJECT CODE STRATEGY

The aim of the object code strategy is to provide
tlght, efficient code which works quickly.

This chapter may be ignored by the normal user’
since all necessary user information is provided
in Chapter 1. However, if the actual structure of
the object code is of importance to the user a
general description is provided by this chapter.

It must be noted that although the obiect code is
structured tc run on a 220C or 905

it will also execute on any 920B, S920M or 903
' such that the whole program resices in

module O, i.e. no 'set absolute' address mode
setting instructions are generated unless the Loader
is instructed to store programs above 8K and none

of the instructions beyond 15 7168, which earlier
machines would interpret as a terminate, or
sequences assuming the preservation of the Q
register after all jumps,are generated.

Any limits imposed by the object code strategy on
the user are described in 1.1.1.4;

Reference - 5.1

= ML@ ROYAL AIRCRAFT ESTABLISHMENT
:% ' Page 158
|
. 920C CORAL LS%’?P%L 7 N Version/Date 1
hl USERSF:ANU%L . ' Author I, Grant
™ 5.1 RUNTIME STORAGE ALLOCATION
) 5.1.1 DESCRIPTION
-~ _
P The object code of a CORAL program contains data
= and executable code which are held statically at
runtime in the 920C core store.
(‘"\
n Data resides contiguously in core store in
module O and is absolutely addressed and code
. resides in both modules O and 1.
L |
Each unit of compilation comprising a program has
a data and code area associated with it.

[}

The following diagram describes the runtime storage

- allocation of a program compr1Q1ng a number of

units of compllatlon.

) ' ' Reference
QEZ;XZT) ROVAL AIRCRAFT ESTASLISHMENT | oo >.1.1 o
= . Pag? o {
B 20C CORAL COMPILER o A
B ‘ $20C CORAL COMPIL Version/Date 2
USERS RIAMUAL -
~ S Author - L Grant ’3
I 5
- MODULE O } \\ \o-7: \REGISTERS\ \\ N ""g
- \ N o
| \ 8 ovaRDs\\LOADLR\DATA N AN - .

_ FIXED DATA “
i COMMON DATA %
: UNIT 1 DATA
; UNIT 2 DATA , DATA AREA =
i S

v .
r UNIT N DATA J 1
/)
EF“W .
L .
[
L FIXED CODE Y

UNIT N _CODE MODULE O CODE
- T AREA
ILJ R
FIXED DATA B ,

P < MO
. A\ §166 8179\\ABS \LOADPR ANAVAY} v
b \
L N Vele0-810%; TNiTIM usT, N\ - MIL,
) MODULE 1™ 77 7777 7 77 777 777 Te-)
! : FIXED CODE - X
_J . T -
g |
[
Lo . R
& | :
| |
LS MODULE 1 CODE

| (AREA
L |
['
|
Lo ' -
o CODE
= UNIT 2 CODE
3 UNIT 1 CODE » 1o

IR UARERER

63 downwar 5 LOAIL CODRE

o
l

sl

L3 o . Reference - 5.1.1
. ROYAL AERCRQFT ESTABLISHMENT o

. Page 160
S8 COk 0 3= ,
§20C CORAL COMPILER \rersnon/Date 1
- 1) 1% AL .
USERS MANUA Author L crant

o~

o) The Loader loads the object program within the
module bounds: :

MOL : Module O Lower Bound, i.e. lowest available
location in Module O

MOU : Module O Upper Bound, i.e. highest
available location
in Module O

MI1L : Module 1 Lower bound

M1U ¢ Module 1 Upper bound

For the default values of these and the method of
specifying different values see 2.1.2.2 and 3.1.2.2.

The data area for each unit of compilation is
loaded from MOL upwards -~ the Common data area:
loaded is that which accompanies the first unit of
compilation being loaded and it is assumed that all
subsequent Common data areas accompanying the
following units of compilation are the same (a
limited number of checks are performed by the
Loader and are described in 2.5.1).

The code area for each unit of compilation is
loaded from M1U downwards in module 1 until the
remaining available space within the specified
bounds is too small for the current unit whereupon
it is loaded into module O -~ the remaining space .
in module 1 being used for a subsegquent unit if
possible. The Loader remembers the available space
in each module and only when the code area of a
unit of compilation will not fit in either module
does it report that the core is full.

RUNREE , Reference 5.1.2 ~
= /o) ROVAL AIRCRATFT ESTABLISHMENT : 4
— | Page 161 o
- 820C CONAL COMPILER : z -
M USERS mm&ug& Author Verious |
5.1.2 LOADER GENERATED INFORMATION .
The fixed data areas are generated by the Loader 3
~above and below the module O lower and upper
— bounds respectively and contain information for -
§ use by the object program or the user, i.e.]
FIXED DATA AREA A -
m 3
| J
. MOL Absolute address of level 1 entry ry
| :
) MOL+1 Absolute address of level 2 entry o
B MOL+2 | Absolute address of level 3 entry f?
MOL+3 Absolute address of level 4 entry
i
B MOL+4 Top level indicator (1.2.3.1) Preset to O Hj
- MOL+5 | Low level indicator (of no use) Preset to O .-
L MOL+6 Standard constants for use by .
' }the object program i
1
Lo . . '
L | | !
. MOL+N v | .
o FIXED DATA AREA B -
L -
. MOU Module 1,upper code bound, M1U ’
’ MOU~-1 Module 1,lower code bound, X
n
o MOU-2 Module O,upper code bound, MOU
B MOU-3 Module O,lower code bound, Y -
- MOU-4 -1 -
| MOU=-5 ~=Sumcheck (1.2,.3.2)
L The fixed code area is generated by the Loader

below the executable cobject code in each core
module if required by the object program and contains
inter~module and multi-level housekeeping code.

(It is not for access by the user).

7

1

Reference = 5.2

Page 162

Version /Date 1

Auﬁmr L Grant

_—

]

—— ——
| —] A

—
[,

| S—

R

DATA SPACE ALLOCATION

The data area of a unit of compilation contains
CORAL data (declared data and procedure parameters)
which is overlayed according to the block structure
and compiler generated data (strings, constants,
addresses, linkage information and workspace).

The data space allocation for each item of CORAL

data 1is described below.

; Reference 5.2.1 ™
| ROVAL AIRCRAFT ESTABLISHMENT o
| : Page 163 .
—1 . ' _ 03 £ . - ‘ .

§20C CO¥ ALQQ}.&?!E.&:R Version/Date 1 -
| USERS ’MA"”M-‘?‘% Author . L Grant }
™ 5.2.1 DATA DECLARATIONS, e.g. 'INTEGER' I; 3
: 5.2.1.1 Data Types
m ' ' 7

‘Internal Data : Internal data declaration space is B

held in the data area of the unit

- of compilation. : -
i - -1
L Common Data : Common data declaration space is -3
- held in the Common data area. -
| !
L 5.2.1.,2 Space Allocation .
. DECLARATION NO. WORDS REFERENCE -
N : ™
| | INTEGER 1 ' (1.1.3.3) i
- FIXED 1 (1.1.3.2))
. . "
| " '
. FLOATING 2 (1.1.3.1) .
B

L

|
L

(- i -

]

i

S

EIAVEY

Reference ' 5.2.2

ROVAL AIRCRAFT ESTABLISHMRERT .
. Page 164_
G‘t ~ o3-S e ‘:\ﬂg:\ﬁi«‘ -
BI0C CORAL COMPILER Version/Date 1
ussﬁs;wgmgﬁt Author L Grant-

5.2.2.1

5.2.2.2

ARRAY/TABLE DECLARATIONS, e.qg, 'FLOATING' 'ARRAY'
Af1:101;

Array Types

Internal Arréy ¢ Internal array space is held in
the data area of the unit of
compilation.

Common Array : Common array space is held in
the Common data area.

Space Allocation

Space for the elements of an array is allocated in
a contiguous area, the rows of a two-dimensional
array following on immediately from one another
and they therefore do not necessarily start on a
word boundary for bit and byte arrays. The first
element of all arrays always starts on a word
boundary

The following space is allocated for an element of

-each type of array:

DECLARATION NO. WORDS REFERENCE
INTEGER o 1 | (Bs in 5.2.1.2)
FIXED o 1 (As in 5.2.1.2)
FLOATING 2 (As in 5.2.1.2)
BIT 1/16 ‘ (1.2.2)

BYTE 1/2 . (1.2.2)
'TABLE - ' : '

. INTEGER ELEMENT 1 (s in 5.2.1.2)

FIXED ELEMENT 1 . {As in 5,2.1.2)
. FLOATING ELEMENT .2 : (As in 5.2.1.2)

PARTWORD ELEMENT AS (1.1.4)

DECLARED

3

/Z . " Reference 5.2.3
ROYAL AIRCRAFT ESTABLISHMENT :
’ : . Page 165

820C CORAL COMPILER

y - Version/Date 1 -

B USERS}@A%Q&L . Author . L Grant
- 5.2.3 PROCEDURE DECLARATIONS, e.g. 'PROCEDURE'PROC ™
L : ’ (Parl, Par2,....Parl); i
5.2.3.1 Procedure Types e

Internal Procedure : The link and parameter space
is held in the data area of
the unit of compilation.

The link and parameter space,
together with further -
information for external
communication, is held in the
Common data area.

Common Procedure

The link and parameter space,
together with further
information for external
communication, is held in the
data area of the unit of
compilation in which the
Library procedure is first
referenced (first reference
loaded) . '

Library Procedure

5.2.3.2 Space Allocation

Space for the link, parameters and communication
information if present is allocated as: ’

-3 1 COMMUNTICAT ION

-2 } INFORMATION

-1 J(COM & LIB ONLY)

0] LINK

1 PARAMETERS

are

1\ o ' ' Reference 5.2.3.

| ROYAL AIRCRAFT ESTARBLISHMENTY : .
i | Page 166

= SR OEITIAL AT 258 B .

8z20C CORAL COMPILER . Version/Date 1

i USERS MANUAL Author 1, Grant
i -
™ :
= 5.2.3.2 v

; (cont.) The following space is allocated for individual

‘ parameters: ‘

| PARAMETER NO. WORDS CONTENTS
I '
| VALUE As in 5.2.,1.2 Value of parameter
o LOCATION 1 Absolute address
! of parameter
‘ ARRAY/TABLE 3 0 Object code
— Communication word
ij 1 Rbsolute address

' of zeroith element
o of array
L 2 Row length of
L array if two

: . dimensional
(} PROCEDURE 2 "0 Absolute address
= of link

N 1 Absolute address
D of entry point
| _
- LABEL 1 Absolute address
- of label
B '

-

. Reference 5.2.4
ROVAL AIGCRAFT

ESTARBLISHMENT
. Page 167
IO CORAL £oAIPLER ’ Version/Da’e ' 1
USERS -MARNHAL Author L Graht

1

]

i

LABEL DECLARATIONS, e.g. LABL:

Internal Label

No data space is allocated.

Common Label

A word containing the absolute
address of the label is held
in the Common data'area.

STRINGS, e.g. +&STRING>+

Although strings are not declared they are held
in the data area of the unit of compilation in

which they are used. For a description of their
storage see 1.1.13. 3. '

b |

SO R

Biadomsmid

P

Lo—1

, ,

o Bl Brontmanst Boemad Bemeasnst

e ernstnnh

[W—

o

Reference : 5.3
‘Page 168 |
Version/Date 1

Author L Grant

AOYAL AIRCRAFT ESTADLISHMENT
§20C CORAL COMPILER

USERS MANUAL

rk

.

i

_ CORAL statements.

- switch element, if in a different unit of

_the executable object code for that unit within

- BEach CORAL statement is made up'of one or more

CODE SPACE ALLOCATION

The code area of a unit of compilation contains
switch arrays and executable object code for the

SWITCH DECLARATIONS, e.g. 'SWITCH' SS:=S1,S2,S3;

A switch array is held as a dispatch table of Jjump
instructions to either the switch element, if
within the same unit of compilation, or to a pair
of instructions for transferring control to the

compilation:

i.e,
0 ‘8 SSs[1]
1l 8 ss{2]
i)
l 1
']
| '
N-1 8. SSINI]

All switch arrays declared within a unit of
compilation are held above (high address end) of

the code area.

STATEMENTS

operations each of which produces an executable
object code sequence whith occupies a finite number
of words. Generally there is more than one sequence
which can be generated for a particular operation
acceording te its environment. A description of the
structure of the executable object code is described
in 5.4.

D

]

BAP

Reference 5.4
Page 169
Version/Date 1

ROVAL AIRCRAFT ES:'»TASLE%%%MEN?

$20C CORAL COMPILER

USERS MANUAL

—
AR

e
L

EXECUTABLE OBJECT CODE

GENERAL OBJECT CODE SEQUENCES

The following description lists the object code
sequences generated for all CORAL operations,

Only the general sequence for each operation is
provided and it must be treated purely as a guide
to the structure of the object code since in
practice sequences are often modified according to
the optimisation being performed (5.4.3) and the
environment, e.g. it is sometimes necessary to
evaluate a complicated argument into working space
prior to. its use. It must be emphasised that the
aim has been to produce tight, efficient code
(without subroutining) which works quickly, within
the limitations of the hardware, although by only

‘describing the general sequences this may not

always appear so. However, it is beyond the scope
of this manual to provide any more detailed
information and it is hoped that the following
description will be useful.

‘A knowledge of the 920C order code and a general

knowledge of the 920C SIR assembly code is
assumed since the sequences are described in this
form. '

A number of further symbols are used for clarity:

f .: Function being performed, e.g. f£=1
for addition

+X

Absolute address of uX
ws : Workspace

wsX: Workspace to contain X

Author L Grant

= ' ' ' Reference. 5.4.1.1 =
I ROYAL AIRCRAFT ESTABLISHMENT }
L] ' S Page 170 =
’ W B EREE
_ $20C CGRVA;L Cia.u@%‘-"h.Eﬁ Version/Date 1 -
4‘ | R AR [. 2
N USERS MANUAL Author L Grant 3
™ N =
['.?(
' A
N 5,4.1.1 Data Reference r}
{
y This section describes the sequences generated for
i edch type of data access. For the use of each B!
item there are normally two associated sequences: 4
m (1) Accessing the VALUE of the data item for -
3 use in an expression. ,ﬁ
- '(2) Accessing the ADDRESS of the data item _
; for use in a 'LOCATION' expression and 7
' on the left-hand side of an assignment o
. statement.
| M
. 3
] OPERATION SEQUENCE g
L.} A
™ : '
Lo ’ 3
L Access of an actual declared i
variable or a formal by value e
M parameter:
- VALUE of V £ v
o ADDRESS of V £ +V -
[
N Access of a formal by location -
L parameter: '
Cy VALUE of V o v
L /f .0 v
f ADDRESS of v £ v
Access of an actual or formal
whole word array or table
element:
| VALUE of Alindex] Evaluate index into accumulator
C ' 1 +Alo]
5 B register
C - /£ o
CJ

ADDRESS of Al[index]

Evaluate index into accumulator

1 +Afo]

Rdmemﬁ 5.4.1.1

ﬁ ROYAL AIBCRAFT ESTARLISHMENT
= , - Page 171
820C CORAL COMPILER .
m = . w.”_ E - Version/Date 1
n USERS MANUAL Author I, Grant
OPERATION SEQUENCE

Access of an actual or formal
bit or byte array element:

"VALUE of A[index] (bit)

(byte)

N

- VALUE of A[index]

ADDRESS of A[1]

Evaluate index into accumulator

14 8188 .
1 . +Af[o]
5 B register
4 40
14 4
5 - WS
/4 o
o} WS
/14 8177
6 - +1
Evaluate index into accumulatox
14 8191
1 +Afo0]
5 B register
4 40
14 1
5 WS
/4 c
o} wS
/o shift modifier
/14 8183
6 +511
Use in 'LOCATION' expression
illegal. For use on left-

hand side of assignment -
see 5,4.1.2

Access of an actual or formal
partword table element (For a
description of the result of
a partword table element
access see 1.1.4.3):

VALUE of Alindex]

ADDRESS of A[index]

1
5
/&
14
(14

Evaluate index into accumulator
. +A[O]

6

Use in 'LOCATION' expression
illegal. For use on left-hand
side of assignment see 5.4.1.2.

B register
.o
shift value
shift value =~
only for sign
regeneration)
mask value

BAP

Reference

wd

= ROVAL AIRCHAFT ESTABLIGHMENT >.4.1.1
L ' ‘ Page 172 J
920C CORAL CORIPILER . ,
, Version/Date 1 .
| -
- OPERATION ‘SEQUENCE ’;
- 'Access of a partword. (For a 7
! description of the result of a A
' partword access see 1.1.6.3).
| VALUE of 'BITS'[x,ylV 4 \Y i
i ' : 14 shift value T
6 = mask value -y
[
D : i
L] ADDRESS of 'BITS'[x,ylV Use in 'LOCATION' expression wed
' ' : illegal., For use on left-hand
r side of assignment see 5.4,1.2. &
L ;
- Access of an anonymous ~
L reference: 5
{ i.‘;J
- VALUE of [V] o \Y -
N /£ o
Lo o
EDDRESS of [V] £ v
- M
| |
o —a?
Access of a constant:
] VALUE of + k £ + k
ADDRESS of + k Illegal B
{ -~
: ‘o
1 .

BIAVEY

‘ G200 CORAL COMPILER

USERS RIARNUAL

ROYAL AIBCRAFT ESTABLISHIMENT

Reference 5.4.1.2
Page 173
Version /Date 2
L Grant

Author

' 5.4.1.2 Assignment Statements

The section describes the general sequences
generated for each type of assignment statement.

OPERATION

SEQUENCE

Assignment to a whole word:
V=X 4 X
5. v

Assigﬁhent to a bit or byte
array elcment:

Alindexl:= ¥

Evaluate index into accumulator

14 8188 - if bit
8191 - if byte
1 +4l o]
5 wsl
4 +0
14 4 - if bit
: 1l - if byte
5 : ws2
o) wsl
/4 o
o) ws2
/6 mask wvalue
5 ws3
4 X
(o) wsl
/0 shift value
/14 o) '
o) ws2
/6 mask wvalue
l . ws3
0 ws2
/5 o

Assignment to an actual or
formal whole word array or table
element .-

A [index] := X

Evaluate index to accunulator

1 +A[0]

5 1

4 X
/5 0

(.}

]

BN

-

ROVAL AIRCRAFY ESTADLISHMENT

OB AL COMPILER

£)

- 820C ©

UBERS . ?!ﬁ_&?ﬁ;}.}i&i,

Reference
Version /Date
Author

5.4.1.2

-
A

L, Grant

]

e

"

L

‘,.‘._.._‘
i J

OPERATION

- 7 'SEQUENCE

‘Assignment to a partword table
element: -

'AlindexJs=X
R) . * l

~
()3~ I %]

P—J
VIO O b iU

~

Evaluate index into accumulator

+Alo]
wsl
wsl
o
- mask value
ws2
X
shift value
mask wvalue
ws2
wsl
o

Assignment to a partword:

'BITS'[x,ylve=X

- :
U'H—-'O_»Dbbmc\.h

\ ,
mask wvalue
wsl

X
shift wvalue
mask wvalue

wsl
v

5.4.1.3

: @ 5 @ : ~ = Reference
o\l ROVAL AIRCRAFT ESTADLISHMENY
> CONAL COMPILE :
@ 820C CONAL COMPILER | Version /Date 2
USERS MANUAL Author I, Grant
-~ . : _
s
~ =
L] 5.4.1.3 Dyadic Operators
TE ' This section describes the general sequences
U generated for the operations: +, -, /+ MASK,
UNION, DIFFER, LEFT AND RIGHT,
| ! It must be noted that if any argument of an operator
requires rescaling (1.1.9.2), other than those of *
~— or / which automatically contain their rescaling
[§ operations, the rescaling is performed before the
‘ use of the argument within the sequence.
[T i.e. evaluate argument into accumulator
LJ 14 shift value
N (6. mask value)
i - OPERATION SEQUENCE
- ADD: Al + A2 : 4 Al
j 1 A2
R SUBTRACT : Al - A2 4 A2
L : 2 - Al
L) MULTIPLY: Al * A2 4 Al
(including any necessary 12 A2
| rescaling). 14 shift value
|
, 4 Al
: DIVIDE: Al / A2 ') 0] +0
g (including any necessary o 14 shift value
- rescaling) . - 13 A2
u : (14 8191)
| or 4 A2
L 0] +0
14 shift wvalue
[5 = ws
. 4 Al
13 ws
f; (14 8191)
|
T -
|
|
pantl

v t\a . , o Reference
‘ o ROYAL AIRCRAFT CSTABLICRMENT. '
ol } » Pa 176
- ge
[8206 CONAL COMPILER e Pya
= ' _ Version /Date
USERS ﬁmm‘u‘ﬁ‘a‘ Author , L Grant
- : .
. OPERATION - SEQUENCE
) MASK: Al "MASK' A2 4 Al
~ 6 A2
| ‘
UNION: Al °"UNION' A2 4 A2
= 2 -1
5 WS
4 Al
2 -
L 6 WS
2 -
| DIFFER: Al 'DIFFER' A2 4 A2
o 6 Al
. 14 1
B 6 777776,
L 8
2 A2
- 1 Al
- LEFT: Al 'LEFT' A2 0 A2
| 4 Al
,J 2 +0
5 _ +O} Clear Q
/14 0
1 RIGHT: Al 'RIGHT' A2 4 A2
; 2 +0
. .5 B register
,‘ 4 Al
J /14 -0
[
|
L.

1

EIAVE

ROYAL AIRCRAFT ESTABLISHMENT

SO0 CORAL COMPILER

USERS MANUAL

Reference 5.4.1.4
Page 177 ’
Version / Date

L Grant .

"Author

]

T

S

]

5.4.1,4 For Statements

This section describes the general sequehces
generated for each type of FOR statement.

OPERATION

SEQUENCE
Simple 'forelement: 4 A2
'FOR' Al:=A2 'DO'... _ 5 Al
' DO statement
While forelement: 4 A2
'FOR' Al:=A2 'WHILE'A3'DO'... 5 Al

REP: evaluate condition 23
and jump to TRUE or
FALSE accordingly
TRUE : 'DO' statement
8 REP
FALSE:
Step forelement: . 4 A2
'FOR' Al:=A2 'STEP'A3'UNTIL' 5 Al
' : A4'DO'... 4 A3
: 5 wsA3
4 A4
5 wshd
REP: 4 Al
A 2 wshd
12 wsA3 .
9 FALSE
"I30' statement
4 wsA3
1 Al
3 Al
8 REP
FALSE:

1

~]

3
3

b st

ey

T T
— . d RSN —

M

e

[

@) : ‘ Peference 4.1,
. @ : = ROYAL AIRCRAFT ESTABLISHMENT 2401 5.
8200 CORAL CORMPILE : : 2
. 820 AL COMPLLER "~ Version/Date. ©
: USEﬂsgﬁﬁﬁg%L Author . L Grant
5.4.1.5 Conditions
This section describes the general sequences
generated for: ‘
Relational operators - EQ,NOTEQ,GR,GE,LT,LE
Boolean operators - AND,OR . :
Conditional expressions and conditional statements
OPERATIOCN _ : SEQUENCE
EQ: Al = A2 4 Al
: 2 A2
7 TRUE
8 FALSE
NOTEQ: Al # A2 4 - Al
2 A2
7 FALSE
8 ~ TRUE
GT: Al > A2 4 Al
2 A2
9 TRUE
8 FALSE
GE: Al = A2 4 A2
2 Al
9 FALSE
8 TRUE
LT: Al < A2 4 A2
2 Al
, 9 TRUE
i 8 FALSE
LE: Al < A2 4 Al
' 2 A2
9 FALSE
8 TRUE

§

§
ot

3
e

i /.\\ o ' Reference 5.4.1.5
ﬂ @ P ROYAL AIRCRAFY ESTASLISHMENT
. ' | - Page 179
. - o : .—"2 vy ;_‘; [E) . N
_ Q20¢ COf éL L?j’!r"ﬂ‘ R Versnon/Date 1 |
’ USERS MANUA&T’ Author L Grant
B OPERATION ' SEQUENCE
AND:
condl 'AND' cond2 'AND'
cond3 evaluate cond 1
M (can be combined with ORs) TRUE (1) : evaluate cond 2
j {
_ f
— '
; TRUE (N~1) tevaluate cond N
E TRUE(N) : consequence
- 8- END
o FALSE(1-N): alternative
- END:
B
L OR:) :
condl 'OR' cond2 'OR' cond3... evaluate cond 1
M (can be combined with ANDs) FALSE (1) : evaluate cond 2
L - !
N
[3
i} FALSE (N-1) :evaluate cond N
- TRUE (1+-N) : consequence
‘ 8 END
{Q FALSE (N): alternative
LJ END:
M .
L Conditional expression/ : :
statement: evaluate condition
[' ' and jump to TRUE
. : : ; or FALSE
= 'IF' cond 'THEN' conseguence TRUE: consequence
. a | 8 END
L 'ELSE' alternative FALSE: alternative
bl ' : ‘ END?

Reference.

: \i o o 5.4.1.6 %
i:i : ROYAL AIRCRAFT ESTABLISHMENT P
= Page 180 d
- 20¢ CORAL COMPILET .
6200 CORAL COMPILER Version /Date 1 -
J ~ 1A B 1
f’" | USERS MANUAL Author L Grant
L -~
- 5.4.1.6 Procedure Handling '§
L This section describes the general sequence v
— generated for procedure declarations and calls, ”
B OPERATION SEQUENCE 1
M Procedure call: : fﬁ
| Ppoc (Paxrl, Par2,...., PariN) evaluate Parl into dcc "
5 param space
éf evaluate Par2 into acc !
' 5 param space .
|
i i
L !
4 evaluate ParN into acc
B -
L 11 LINK call
8 ENTRY PROC !
) :
- Procedure declaration: : -
= 'PROCEDURE'PROC (Parl,Par2,..., : .
ii : ' ParN) 5 last param space
- parameter‘housekeeping e
) i code
‘ procedure body ' !
- I} ')
({
\ '
- , .]
EXIT: O LINK -
& /8 1
L
Answer statement:. 4 A
8 EXIT

,,,,,,

L

'ANSWER' A

]

i

)

@@? ROVAL AIRCRAFT ESTABLISHMENT

. 8200 CORAL COMPILER
USERS ‘MANUAL

Reference 5.4.1.7
Page 181
Version/Date 1

Author L Grant

-

[
i

'5.4.1.7 Label and Switch Handling -

This section describes the general sequences
generated for label and switch access.

OPERATION - SEQUENCE
Label access:
'GOTO!' L 8 L
Switch access: 4 N - (cause
'GOTO' SSIN| 1 +8S[o] transfer to
8 X switch via
" a Compiler
generated
fixed
sequence)

T

]

’ Reference 5.4.2
ROYAL AIRCRAFY ESTABLIGHPMENT

Page 182
8200 CONAL COMPILER : Version/Date ‘6/";/”6'
. . i af [0
USERS MARNUAL | Author Various

~point package (2.3).

FLOATING POINT HANDLING

The standard Elliott 920C Flbating Point package, QF,
has been used as a basis for the object code floating

Any floating operation produces cbject code which is
interpreted by the Compiler Floating Point Library
Package, CAPQF, (which is supplied in vel ocatable binary form).

The floating point object code sequences are basically
similar to integer and fixed point 'sequences (5.4.1)
with entries to, and exits from, the floating point
package generated according to the following rules:

(1) Access of a floating item is preceded by
an entry to QF it not currently in flocating

node.

(2) Access of a non-floating item is preceded’
by an exit from QF if currently in floating

node.

(3) Instructions 7,8,9,11 and 15 cause
automatic exit from floating mode prior

to execution.

It must be noted that there has been no attempt
made to especially optimise the object code for
floating operations and therefore certain constr
are relatively inefficient.

ucts

: Reference 5.4.3
ROYAL AIRCARAFT ESTABLISHMENT » 183
B Page
L Tl ot & Fr ;-";";?? rE B .) . v
G200 CORAL COHIPILER Versaon/Date 1
f g o L& N DI EN .
USERS MANUAL Author - L Grant

R

A

OPTIMISATION AND THE PRODUCTION OF EFFICIENT CODE

This section describes the main features of the
optimisation performed by the 920C CORAL Compiler,
together with notes for the user on the production
of efficient object code from a CORAL program.

It is not within the scope of this manual to

provide an exhaustive description of the object

code but it merely presents a guide te the structure
of the code and notes on any specific important
optimisations.

A detailed knowledge of 5.4.1 is assumed since the
descriptions of the optimisations are presented as
the effects on the general code sequences.

In the following description frequent reference is
made to Chapter 1 where the structure of the
object code which directly affects the user is
described. '

Reference 5.4.3.1
AOVAL AIRCTAFT ESTABLISHIALINY b
‘ Page 184
220C CGRAL COMNPILER .
_ vRaLc Version/Date 2
USERS {ﬁ NUAL Author L Grant

.

1

C]

J—

‘4__,

s
|

——

C

N

(1)

5.4.3.1 Evaluation of Expressions

Re=ordering of Arguments

‘This is by far the most important optimisation

performed by the Compiler in that it has the
most significant effect,. .

In general the Compiler re-organises the
arguments of operations to produce more
efficient code.

e.g. A + B'MASK'C is evaluated as B'MASK'C + A

Unoptimised x . Optimised /
4 A 4 B

5 WS I 6 C

4 B 1 A

6. C

1 ws

This is mainly applied to expressions but is

also applied to cerxtain other types of operation.
In the above example, if A;B and C are function
calls the optimisation is not performed in order
to adhere to the Official Definition (1.1.9.6
and OD 6.1.3).

It must be noted that the Compiler does not
extract and evaluate sub-expressions which are
used several times. It is the responsibility
of the CORAL programmer to ensure that such
expressions are only evaluated once into a
temporary workspace and it is that which is
used subsequently in place of the expression.

B*C + D;
F/(B*C) + (B*C)/G;

e.g. A:
BE:

o

should be written as:

Xs= B*C;
A:= X+D;
E:i= F/X + X/G;

Similarly, repeated use of the same partword
should be avoided.

P

[

\
Lb.’-*'-‘“‘ J&

| N

B

R

' Reference 5.4.3.3-
ROVAL AIRCRAFT ESTADLIBHMENT i
Page 185
C CORAL COMPILES -
92@@ ﬁ@f ﬂL & .) &.ﬁ VerSlOn/Date l
USERS MARNUAL

Author L Grant

5.,4.3.1
(cont.)

(2)

(3)

(4)

(5)

(6)

Evaluation 6f expressions and assignment

"immediately followed by division with arguments

Rescaling

statements with arguments of different scales
will automatically produce rescaling code
sequences (1.1.9.2) which obviously degrade the
efficiency of the object code. Integer or

fixed point working is more efficient than
floating point working and in general it is most
efficient to use variables of the same scale.

Compile Time Arithmetic

See 1.1.9.3.

Multiplication and Division

The object code for division is relatively
inefficient due to the structure of the hardware
and the necessity to maintain accuracy (1.1.9.5).
An additional feature is provided which
maintains a double precision intermediate result
between a multiplication operation which is

of the same scale (1.1.9.2.).

Multiplication and division by constant values
which are powers of two are not optimised intoc
the equivalent shift instructions.

Rounding

See 1.1.9.5.

Function calls within expressions as value
parameters :

See 1.1.9.6.

B/

- B

OYAL SIRCRAFT ESTADLISHMENT

Reference
Page 186
Version/Date .~ 2
Author |

BZ0C CORAL COMPILER

USERS :;fagmﬁgL

5.4#3-2

L' Grant

€
Hran

| ST

ad

E

C

[

5.4.3.2

Low Level Instruction Optimisation

(1)

(2)

A and B Register Optimisation

The Compiler 'remembers' the contents of the
hardware and floating point (software)
accumulator and B register when they contain
simple data or constant values and redundant
instructions which reload these registers
are usually avoided.

e.g. A:=B;
: C:=A + D;

Unoptimised x Optimised v
"B 4 B '

A 5 A o

A i - D

D 5 C

C .

Ul e U1 >

It must be noted that the Compiler only

remembers the 'latest' contents of the register.

A:=B will generate
C =2

€.g.

but
¢=B will generate
:=B :

4
5

5

T RCNT I

Q> w

QW w

(Acc
(Acc
{Acc

(Acc
(Acc
(Acc
(Acc

o

to#un

A change to or from_floating point mode

point registers.

Shift and Mask Optimisation

-

B)
A)
C)

B)
1)
B)
C)

will
automatically cause the Compiler to 'forget!
the contents of the hardware and floating-

Redundant shift and mask instructions within
rescaling, mulitplication, division and
.partword handling operations are not generated.

Similarly, consecutive shift and mask
instructions are combined {other than those
generated from a user 'RIGHT' operation which
is generated as specified since it mav be
written for sign regeneration).

b band

3
of

t, k
"

[SO

AOVAL AIRCRAFT ESTADLICHMENT

Reference 5.4.3.2

: Onmn 187
, - rage
5200 CONAL COMPILER .
§20 HAL COMPILER - Version/Date 2
SERS AR i & ’
USERS MANUAL - Author L Grant

5.4.302
(cont.)

(3)

This is particularly important when both the
left and right-hand sides of an assignment

- statement are partwords.

e.g. 'BITS*[3, 11A:= 'BITS'[3,15]B

Unoptimised x Optimised v

4 A 4 A
6 +7777618 6 +7777618
5 ws ! 5 WS
4 B 4 B ,
14 8177 Access 14 8178
6 +7 part- 6 +168 ’
word o
14 1 ?Assignment 1 ws
6 +168 | to part- 5 A
word :
1 WS
5 A

Jump Optimisation

A jump instruction to a compiler generated
label which labels a jump instruction to a
source label causes the latter not to be
generated and the former to be generated as a
jump instruction to the socurce label,

e.g. 'IF' A=B 'THEN' 'GOTO' X 'ELSE' 'GOTO' Y

Unoptimised X : Optimised ¥

00 00 00 00 ~J N i
R o3 Bl es B e v
00 1N
SRR

BT

; Reference 5.4.3.2
ROVAL AIRCRAFT ESTABLISHMENT

M ») Page 188 j
{ 920C CORAL COMPILER Version/Date 1

_ USERS MAMUAL Author L Grant
! : 4 * “-,4‘

., y)
- 5.4.3.2 | . |

: (cont.) Also, a jump instruction to a compiler generated -

label on the next instruction is removed. ~

(} e.g. 'PROCEDURE' PROC; =
a "BEGIN' B
. PROC BODY
) ' o
g ¢ .
. YANSWER' A -
} 'END';
% Unoptimised x Optimised v i
- PROC body 'PROC body
3 L :
b ‘]
i 4 A 4 A
— ‘ 8 EXIT (EXIT:) © LINK

| (EXIT:) O LINK /8 1

; /8 1 :
|
K

SR

Reference . '5,4.3,3

ROYAL AIRCRAFT ESTABLISHIMENT »
Page 189
CATHEL S £ o Al o "ﬁﬂg‘:}lﬂ = .
& £ va? & \uuﬂmw. %o RSV 't-ag VGI'S)O”/Da‘ie 1.
USERS MARNUAL Author I Grant

J—

5.4.3.3

Data

AX

Access

(1)

(2)

Data Overlaying

Data is overlayed according to the block
structure of the CORAL language (OD 3)
However, it is recommended that the 'OVERLAY"
declaration facility be used to economise
even further on data space or to add clarity
to a program (1.1.5 and OD 4.8).

Array Access

Access of an array element (other than bit or
byte) with a constant index between 0 and

8191 causes the generation of an optimised
code sequence. ‘

e.g. Access of A[6]

Unoptimised x Optimised /
4 +6 O +A{0]
1 . +4A[0] /£ 6
5 B register
/£ 0

This is the only optimisation performed on array
access and it must be recognised by the user
that array access with a variable index,
particularly two~dimensional, is inefficient.

Bit/byte array access is necessarily inefficient
and unless a large quantity of such data is
required it is recommended-that it is held in

a different form, i.e. within a whole word

array or a table., Alternatively in some cases
it may be possible to overlay the array with a
table with elements of equivalent structure to

‘increase efficiency - however this may well not

"be convenient. o

(3)

o

Anonymous Reference

As with array access the use of an anonymous
reference with a constant index between O and

8191 causes the generation of an optimised
code sequence.

Reference 5.4.3.3

-
3
o 4

]_T @T? ROYVAL AIRCRAFT ESTABLIZHARENT V §

[- , - Page 190

o 820C CONAL COMPILER Version/Date 1

o USERS MANUAL Author L Grant E

T D 5

)

| 5.4.3.3 | |]

' (cont.) e.g. Access of [6]

(} Unoptimised x Optimised v/)

L 0 +6 't 6 -
/£ 0 -

[

[~ S A

B
I 1
| S

Lot Zeon

(4)

‘element)

"lesser degree partword access is necessarily

_repacked into the partword form after use -

Partword Access ('BITS' or partword table

As for bit and byte array access but to a

inefficient and should be avoided as far as
possible., Unless a large gquantity of such
data is required it is recommended that it is
held in a whole word form. Alternatively a
set of partword information should be unpacked
into whole word working space before use and

both operations being performed by general
purpose procedures.

As stated previously the Compiler will not
generate redundant shift or mask instructions.

. o

i
| S

GL&

[

ROVAL AIRCRAFT ESTARLISHRENT

Reference 5,4.3.4

Page 191
20C CORAL COMPILE . |
§20C CORAL COMPILER Version,/Date 1
USERS MANUAL Author L Grant

—

5.403.4

Miscellaneous Optimisations

(1)

(2)

(3)

Assignment Statement o - ' .

The 920C increment instruction is used in a simpl
assignment statement if applicable,

€.g. As= A + 1;

Unoptimised x Optimised /
4 A 10 A

1 41

5 a

For Statements

If there is only one FOR element the 'DO°
statement is obeyed inline otherwise it is
made into a subroutine which is generated
following the code for the FOR statement

(a call to the subroutine being generated in
the position of the 'DO' statement within the
FOR statement code),

The following notes apply to a FOR statement
with a STEP element: . :

'FOR' Al:=A2 'STEP' A3 'UNTIL A4 'DO' P

(a) If A3 and A4 are constants they are not
~evaluated into working storage but are
used directly.

(b) If A3 is a constant the sequence for
determining exhaustion of the loop is
cptimised to a simple subtraction since
only the sign is required.

(c) If A3 is the constant +1 the 920C
increment instruction, 10, is used for the
updating of Al. ’

Procedure Parameters

On a procedure call parameters are set up in

the procedure parameter space before transferring

control to the procedure exceot for the last
parameter which is passed via the accumulator.
Single parameter procedures are therefore
relatively efficient and care should be taken te
ensure that further parameters are necessary -
Common data space being an alternative.

GLLP

Reference 5.4:s3.5

ROVAL AIRCAAFT ESTABLISHMENT

Page 192
ORAL COMPILE s '
£e COMPILER Version/Date 1

USERS}W%MQEL Author L Grent

KOy |

SI.4°3IS

_AcCess of External Information

The structure of the ooject code has been deSLgned

such that access of external information, i.e.

outside the current unit of compilation, usually
incurs very little overhead to that of internal
information. The method of external ‘access is
described below together with access of formal
procedure parameter information to which it is
analagous.

(1) Data Access

All data lies within the lower 8K and is
always directly addressed.

Common data access is therefore identical
to internal data access.

Formal data access is similarly identical
except for formal by ‘LOCATION' parameter
access (5.4.1.1). '

{(2) Procedure Access

If a Common procedure is loaded into the
~same core module as its call the normal

procedure call instruction pair is generated:

11 LINK
8 ENTRY

Therefore by carefui program loading no
overhead will be incurred.

However if a Common procedure is loaded in a
different core module from its call there is
still only a two word call generated:

11 a
8 b

which cause transfer to the procedure via a

further pair of compiler generated instructions

for that procedure and a compiler generated

~ linkage procedure. The overhead is therefore

: : Reference 5.4.3.5
ROVAL AIRCRAFT ESTADLISHMENT :
: Page 193
CACHL™ LD ng o BRgs S . , :
wa.Qm o T & 3 FUR B b@iau BB BD VerSlOﬂ/Dale l
U$EQSFW'@?AL Author L Grant

5.4.3.5
(cont.)

(3)

‘Therefore any reference to the label within the

~at the head of a procedure for a formal label

two instructions per procedure declaration
(not call) of such a procedure plus a single.
general purpose linkage procedure (approx 15
words) which is used for all inter-module
procedure calls from the current module.

A formal procedure call always causes the
generation of three instructions:

0] o]
11 d
8 e

which causes transfer to the procedure via the
above compiler generated linkage procedure
(since the position in core of any corresponding
actual procedure is unknown). -

Label Access

A pair of instructions are generated at the
head of a unit of compilation for a Common
label and they transfer conzrol to the label
via a three word general purpose module)
relativising sequence which only occurs once
per module:

L‘: 4 absolute address of lébel L

8 module relacivising sequence

unit of compilation only gerzrates a single
jump instruction which tranzfers contrcl to the
label via this two word pair: '

8 L'
A similar pair of instructicis are generatéd

such that all references to the label are
generated as single jump ins=ructions.

i oo Reference 5.4,.3.5 -
—~ (D’i/;\@ ROYAL AIRCRAFT ESTABLISHRMENT | o 24350
P . 194 i
Il Page A
o 200 CORAL COHIPILER Lo .
. ORAL COMPILE Version /Date 1 -
?T UsgﬁﬁrﬂﬁﬁgéL , - Author L Grant
[‘ &
{"“ 5.4‘3-5 . . 'hj
ﬁ (cont.) (4) Switch Access a
- In order that all switch element accesses are -~
f; only three instructions in length, internal,
' Common and Formal switch element accesses are i
identical:) ' -
- : T ‘
u 4 Index o
1 + Ss[0]
8 module relativising sequence -
(as in (3)) .
- (This has a slight time overhead if the -
B switch is internal). :
.
P
[, i
i
(
L
L
;

S—

R

EAVE

H
'

ROYAL AIRCRAFT ESTADLISHMENT

Reference 5.4.4
Page 195
Version/Date 15/2/76

Author Varions

MULTI-LEVEL HOUSEKEEPING CODE

A knowledge of 1.2.3.1 is assumed. T
interrupt handling housekeeping code
by the Loader as the segments of a mu
program are loaded.

he following
is generated
lti~level

The following code is generated by the Loader in
the fixed code zrez of module O. The PROGRAM

ENTRY POINT supplied by the Loader (4
START.

.1.5.2) is at

RESTART 4 _ -1
' 5 TOP LEVEL INDICATOR (-1~ AUTOSTART)
START 4 =8 RESTART (Set up AUTOSTART)
5 8177 .
, 4 (Set up low leve
-4 +L28S SCRs) :
5 2 ‘
4 +L3S
5 -4
4 +L4S
5 6
15 7177 ' (14 0 if program
: loaded in ‘module 0)
0 +L1S

/8 0

~ Reference 5.4.4
Page 196

Version/Date 2
Author - L Grant

SEGLEV1 ' //;

The following code is generated enveloping the

segments of each level and may therefore res;de in
any modul ' , i

Eng////
SEGMENTS
////

2 Ll (reset «+ A & Q)
4 LIA
15 7168

‘Lls .15 7177 (14 O if program loaded

5 L1la in module 0)
14 18

5 L1Q

4 +1 '
5 TOP LEVEL INDICATOR (+1 INTERRUPT)
8 SEGLEV1 o

SEGLEV2 //E‘EL 4
A LEV

//EGMENTG

///,

L20Q

L2a

7168

7177

L2a

18

L2Q

+1

LOWER LEVEL INDICATOR
SEGLEVZ

=

e
U Ui U1 UT UL N

L2s

s

Reference 5.4.4
ROYAL AIACRAFT ESTADLIDHMENT

. Page 197
§20C CORAL COMPILER .
REC o SR Version/Date 1
34 AR
USERS MAS UAL Author L Grant

SEGLEV3 [7 7
s /LEVEL 3
Ve
SEGMENTS
YA A4
2 L3Q
4 L3Aa
‘ 15 7168
L3S 15 7177
| 5 L3a
14 18
5 130
4+l
5 LOWER LEVEL INDICATOR
8

SEGLEV3

LEVEL. 4
/ Vg

SEGMENTS

A4

SEGLEV4/L4S | / s

8 SEGLEV4

NOTE: The 8 SEGLEVn instruction is generated as 8 ; +0
unless the last segment of a level ends with
. 'GOTO' first segment name;.

Reference Appendix 2

"Issue™ 3B/

g

Author L S Grant

=

-

“Actualist = Actual

.Address = Svcnoalnteaor

- Booleanword2 = Doolea‘"urQB

Booleanword4 = Booleanword

APPENDIX A
920C CORAL SYNTAD

As deocrlbnd in the Cfficial Definition of CORAL 66
together with the implementation dependent features
and onhaﬂcenents. ’

Actugl = Expression,
Wordreference

—.—- Destination
Name

Actual, Actudllqt
Addoperator = 4+

Addoperator Fraction
- Id
Alteriative = Statement
Answerspec = Numbertype
Void

Answerstatement = ANSWER Expression ' '
Arraydec = Nunbertype ARRAY Arraylist Presetlist

. ' BIT ARRAY Arraylist Presetlist

BYTE ARRAY Arraylist Piesetlist

Arrayitem Idlist [Sizelist]
Arraylist = Arrayitem-

Arrayitem, Arraylist
A551ﬂnmentstatemenL = Variable < Expression
Base = Td

Id [Signedinteger]
Bitposition = Integer .
Block = BEGIN Declist ; statementlist END
Booleanword = Booleanword?2
Booleanword4 DI ~FER Booleanword5

Booleanword5 UNION Booleanword6
Booleanwordl = Shiftw01a '

Booleanword6 MASK Shiftword?2

Typedprimary

Booleanword5 = Booleanword?
' ’ Typedprimary
Bocleanword6 = Rooleanword3
Typedprimary -
Bracketedcomnent = (any sequence of characters in which

round brdcxets are matched)

Codeinstruction = Label: Codeinstruction
Simplecodeinstruction
Codesequence = Codeinstruction

Codeinstruction; Codesequence
Codestatement = CCODRE BEEGIN Codesc cuence END

Cormen = Commo ﬂ(.fOH‘.mL..nlCr;ltOI_‘;
. \ VRN ‘ .

¥ .'J\L

J

CAP

Reference Appendix A

Page 199 (cont'd)
fersion/Date 2

Authorr L. S Grant

Q20L CORAL COMPILER
LUSERS RMARMUAL

‘Commoncommunlcator = COMMON 1d (Commonitemlist)

Commentsentence = COMMENT any sequence of characters
not including a semi-colon;

Commonitem = Datadec
Overlaydec
Placespec
Procedurespec
Void
Commonltemlwst = Commonitem v
Commonitem ; Commonitemlist
Comparator = < Oor £ or = OY 2 Or > Or #.
Comparison = Simpleexpression Comparator Simpleexpression
Compileunit = Program
Comrmoncommunicator
Library
Compoundstatement = BEGIN Statementlist END
Condition = Condition OR Subcondition
- Subcondition
Conditionalexpression = IF Condition
THEN Uncond1t10nalcxgressxon
ELSE Expression
Conditionalstatement = IF Condition THEN Conseguence
i IF Condition THEN Conseguence
ELSE Alternative
Consequence = Simplestatement
Label : Consequence
Constant = Number ' '
Addoperator Number
Constdntllst = Group _ _
Group, Constantlist
Coralunit = CORAL Compileunit FINISH

i

Datadec = Numberdec
Arraydec
) Tabledec
Dec = Datadec
Overlaydec
Switchdec
~ Proceduredec
Declist = Dec ’
Dec ; Declist
Destlnatlon = Label
Switch [Index]
Digit = O or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9
Digitlist = Digit : -
Digit Digitlist
Dimension = Lowerbound : Upperbound
Dummystatement = Void

>

AR

Reference ApPpendix A

ROVAL AIRCRAFT ESTA"EHC‘H;‘J‘%ENT :
¥ mar e Page 200 (cont'd)

$20C CORAL COMPILER

Version/Date 2
BIAINTENAN QCLUﬂn..“llATFON '

Author L S Grant

'Elementdecllst = Elementdec

"Forlist = Forelement

‘Index = Expression

‘Elementdec = Id Numbertype Wordposition

Id Partwordtype Wordposition, Bitposition
Id Partwordtype WordeSLtlon BIT
Bitposition

Elementdec ; Elementdeclist
Elementpresetlist = PRESET Constantlist

Void
Elementscale = (Totalbits, Fractlonblts)
(Totalbits)
Endcomnent = I&
Expression = Unconditionalexpression

Conditionalexpression

Factor = Primary _
Booleanword
Forelement = Expression
Expression WHILE Condltlon
Expression STEP Expression UNTIL Expression

Forelement, Forlist
Forstatement = FOR Wordloference <+ Forllst DO Statement
Fraction = ,Digitlist
Fractionbits = Signedinteger
Function = Integer

Gotostatement = GOTO Destination
Group = Constant

(Constantlist)

Void

Id = Letter Letterdlgltstrlng
Idlist = Id
Id, Idlist

Integer = Digitlist
: OCTAL (Octallist)
LITERAL (printing character)

Label = Id
Labellist = Label
o Label, Labellist

Length = Integer

Letter = a or b or cor or z

Letterdigitstring = Letter Letterdigitstring
Digit Letterdigitstring
Void

GLAP

—_—

Reference Appendix A

SHMENT
i Page 201
" Version/Date 1
JSER ?ﬁ»@;g U“\
us AuthOr L S Grant

(Cont'd) -’

S |

Libproceduredeclist = Libproceduredec

Libprocedureheading

- Lowerbound = Signedinteger

Liblist = Libspec C S
Libspec Liblist ' o .

: Void :
Libproceduredec = Answerspec PROCEDURE Libprocedurehead-
ing; statement

Libproceduredec:; leproceduredec—

list :
= Id/Digitlist

Id/Digitlist (Parametersveclist)
Libprocedurespec = Answerspec PROCEDURE Libprocparamlist
Libprocparameter = Id/Digitlist :

‘ Id/Digitlist (Typeilst)

Libprocparamlist = Libprocparameter
: Libprocparametnr, leprocparamllst
Library = LIBRARY Id Liblist Libproceduredeclist
Libspec = LIBRARY Libprocedurespec;

Macrobody = any sequence of characters in which string
’ quotes are matched
Macrocall = Macroname
Macroname (Macrostllngllsy)

Macrodefinition = DEFINE Macroname ¢ Macrobody # ;

DEFINE Macroname (Idlist) { Macrobody %
Macrodeletion = DELETE Macroname ;
Macroname = Id
Macrostring =

!

any sequence of characters in which commas
are protected by round or square brackets
and in which such brackets are properly
matched and nested

Macrostring = Macrostring

Macrostring, Macrostringlist

Multoperator = * : o

/

Name = Id
Number = Real
Integer
Numberdec = Numbertype Idlist Prosetllst
Numbertype = FLOATING
FIXED Scale
INTEGER

Octaldigit = O or 1 or 2 or 3 or 4 or 5 or 6 or 7
Octallist = Octaldigit

Octaldigit Octallist
Overlaydec = OVERLAY Base WITH Datadec

Parameterspec = Specifier Idlist
Tablespec

Procedurespoc

3

i

F—

1

r~—
e
..
Lot
o/

RPL. nee
202

' N . . Appendi.s
ROVAL AMICRADT ESTADLISHATIIT Ppencisx

v

. P")ga 2
SZ0C CORAL COIMPILER o o
. "Is s.u.e" 3B/4

QERIC A AN : : o '
USENS MANUAL Auth()r 1, S _Grant

]

S

[

Parameterspeclist = Parameterspec :

- : - Parameterspec ; Parameterspeclist
=’Id,[InQex] -

'BITS [Totalbits, Bitposition] Typedprimary

Partword

Partwordrcfev ce = Id [Index]

- L - 1 BITS [Totalbits, BlipOSltlonJ

Viordreference
Partwordtype = Elementscale

UNSIGNED Llenents;ale

Placespec = LABEL Idlist

SWITCH Idlist

-Presetlist = <« Constantlist

Void)
Untypedprimary '
Typedprimary
Procedurecall = Id

Id (Actuallist)
Procedura2dec = Answverspec PROCEDURE Proced ireheading;
Statement

Procedureheadlng = Id -
Id (Parametersceclist)

Primary

Procedurespec = Answerspec PROCELURE Procparamlist
Procparaneter = Id -
T Id (Typelist)
Procparamlist = Procparameter
Procparamcter, ¥Procparamlist

Plogram = PROGRAM Id lellst Corzaon Segmontllst-
Real = Digitlist.Digitlist
: - Digitlist-j10 Signedinteger
Signedinteger
- Digitlist. Digitlist 3
OCTAL (Octallist. Octa

ne dlntege*

e

('1‘ LL]

Scale = (Totalblts, Fractionbits}
Segment = SECGMENT Id Block
Segmentlist = Segment -

Segment; Segmentlist

Shiftoperator = LEFT
' RIGHT
Shiftword = Shiftword2 Shiftoperator rT‘yped‘arJ.ma:cy
Shiftword2 = Shiftword
T Tygeéprnnary .
Signedinteger = Integer
Addoperator Inteoger
Simpleccdeinstruction = / Funciticn, Address
Function, Address
Void
Simpleexpression = Term

“

o |
IRy UL s

o4 ek i

Addoperator Tern

-

in

(Cont.*

Reference Appendix A

: “Version/Date .2 _
USERS Fa?.ﬁ‘?'xu-&&) : Author L. S Grant

Page 203 {Cont'd)

Type = Specifier

Simplestatement = Assignmentstatement
- Gotostatement
Procedurecall
Answerstatement
Codestatement
Compoundstatemant
Block _ , ~
- Dummystatement B N
Sizelist = Dlmen81on
. Dimension, Dimension
Specifier = VALUE Numbertype
LOCATION Numbertype
Numbertype ARRAY
BIT ARRAY
BYTE ARRAY
LABEL
SWITCH
Statement = Label : Statement
Simplestatement
Conditionalstatement
Forstatement
Statementlist = Statement S
Statement ; Statementlist
String = 4< sequence of characters>?
Subcondition = Subcondition AND Comparison
: Comparison
Switch = Id '
Switchdec = SWITCH Switch <« Labellist

Tabledec = TABLE Id [Width, Lengthl]
" [Elementdeclist El@mentpresetllst]
Presetlist
Tablespec = TABLE Id [Width, Length][Elementdecllst]
Term = Factor ,
~ Term Multoperator Factor
Totalbits = Integer

TABLE
- Answerspec PROCEDURE

Typedprimary= Wordreference
Partword
LOCATION (Wordreference)
Numbertype (Expression)
Procedurecall '
Integer

Typelist = Type

Type, Typelist

Lt

3
3

b

o

.

]

BN

HOVAL AIRCRAFT ESTARLIOMMENT

92CC CORAL COMIPILER

Version /Date

USERS MANUAL Author

LS

Reference Appendix A
Page 2044205 (Cont'd)

Grant

[

B

Unconditionalexpression = Simpleexpression
: . String
Untypedprimary = Real
(Expression)
Upperbound = Signedinteger

Variable = Wordreference
g Partwordreference
Width = Integer ‘ .
Wordposition = Signedinteger
Wordreference = Id
' Id [Index]
Id [Index, Index]
{Index])

GLAP

ROVAL AIRCNAFT ESTADLISHMERT

'920C CORAL COMPILER
USERS MARNUAL

Reference
Page 206

Version/Date 3
Author L

Appendix

Grant

m
\.4

”“‘

APPENDIX C-

COMPILER OPERATION

v

PROGRAN

CPTIONAL
‘MACR’O DEFINITION b
LIBRARY :
T~ DIAGNOSTIC
CORAL OPTIONAL > REPORT
SOURCE WITH N, MACRO
ACROS 4 ‘,/////’_~
MAC PREPROCE SSOR ~——
MACRO FREE
CORAL SOURCE -
’/\..\
DIAGNOSTIC
PAS
S AA N REPORT
(5YNTAX 7 L\~_/////~*~
PASS 1A ANA
: NA 'S .
INTERMEDIATE LYS) '
CODE
J COMPILER
. (TABLES |
DIAGNOSTIC.
PASS 1B > . REPORT
(sEMANTIC \\‘—/////,w_
PASS 1B CHECWKING)
INTERMEDIATE '
cope
COMPILER
Y TamLeES
_ DIAGNOSTIC
PASS 2 REPORT
> OPTIONAL
(cobe oBTECT
GENERATION) \M_AP/—~
RELOCATARLE
Biria Ry
e~ DiAaNOSTIC
OoTHER N N ?C—%;SQT
RILOCATABLE. re LOADER [4 LTS ATION
(coriona—"] Y
APRSULUTE -
SIS RN A -
© AP
EXECUTABRLE
opTECT

‘Reference Appendi:
— @&E) ROVAL AIRCHAFT ESTABLISHMENT PP tx D
L - Page 207
i £20C CORAL COMPILER .
- U5Eﬁgﬁﬁ@ﬁg§i Author L Grant
‘!'—‘ . .
- APPENDIX D
‘ COMPILER INPUT/OUTPUT
‘L COMPILER | INPUT QUTPUT
PROGRAM PERIPHERAL CORE PERIPHERAL CORE DIAGNQOSTICS
MACRO CORAL source |. Macro-free Error and
- PASS with macros CORAL source Warning
i llessages
. PASS Macro-free Pass 1A Pass 1A Error and
5 1la CORAL cource intermediate | compiler |Warning
t code tables fessages
a PASS Pass 1A Pass 1A Pass 1B. Pass 1B Error and
1B intermediate | compiler || intermediate | compiler |Warning
code -tables code tables Messages
.
a PASS 2 Pass 1B Pass 1B Relocatable | Exrrorx
intermediate | compiler | binary Messages
ij code tables Object Map
L,
Relocatable Absolute Program Error and
[binary binary in core Warning
| LCADEER Messages
Lo
Core
! utilisation

information

= . |
. ; ~ Reference appendix E
ROVAL ﬂulﬂhﬂ[»\.FT Eﬁ&ﬁL!%ﬂ%?ﬁEﬁ? 208
: Page
g20¢ CORAL COMPILER . »
- e Version/Date 1
Author 1, Grant

USEH&JWANQQL

>

~ APPENDIX E

EXAMPLE PROGRAM

The Program consists of three units of compilation:

TWO segments
One segment

Two library procédures

is supplied for the

The following jnformation
compilation of each unit:

g user commands for each

souxce .
Teletype lo9 containin
‘Pass _
. Object Map
The followiﬁg jnformation is supplied for the link
loading of,the units:)
TeletYpe log centaining user commands for the i
. t
e Loader N

Loader

Core uti rmation fyom th

1isation info

I ' ' . ~ Reference dix .
Ei (Eglg&ig) ROYAL AIRCRAFT ESTASLISHMENT Appendix E -
- : . .) : Page‘ 209 g
120C CONAL COMPILER . . |
M 2 ¥ - c;@ e ~ Version/Date 1
| | USERS RIANUAL : " Author L S Grant i
4
N | B &
. UNIT 1 : SOURCE 4
B ' CORAL' -
| ' PROGRAM' EXAMPLE CORAL PROGRAM 3
- ' COMMENT' ') :
B THTS PROGRAM HAS BEEN WRITTEN TO DEMONSTRATE THE .
: USE OF AND INFORMATION SUPPLIED BY THE 920C CORAL -
a COMPILER AND LOADER ; , :
| - ™
J {
o
["I, IBRARY' 'PROCEDURE’)
ADDTHEM / 2 ('VALUE''INTEGER','LOCATION''INTEGER') ,
SUBTRACTTHEM / 4 ('VALUE' ' INTEGER','LOCATION''INTEGER') ;
.
- 'COMMON' PLACE{ -
] 'PROCEDURE' DIVIDETHEM ('VALUE''INTEGER! -
= | 'L,OCATION' ' INTEGER') ; !
) 'LABEL' DEMON 2/,DEMON 3 ; ’ ' ~4
a 'INTEGER' INT ;) ;
H ! ~ "'x%
[S : \1\
M ~ -
L "SEGMENT' DEMON 1 ~
'COMMENT , | .
| ' SEGMENT ONE CALLS A LIBRARY PROCEDURE ; ~
L} 'BEGIN' ~
| 'INTEGER' A ; A

L

Ai=6 ;

ADDTHEM (A,INT)
' 'GOTO!' DEMON 2 ;
YEND' ;

'SEGMENT' DEMON 2

'COMMENT '
SEGMENT TWO DECLARES THE COMMON PROCEDURE
AND CALLS A LIBRARY PROCEDURE ;

'BEGIN'

*INTEGER' A ; :

'PROCEDURE' DIVIDETHEM ('VALUE''INTEGER' B
'LOCATION''INTEGER' C) ;

.
1

C:=B/6 ;
a:=7 .. '
SUBTRACTTHEM (A,INT) ;
tGOTO' DEMON 3 ;

'END'

et
FINISH

¥ | Reference .
ﬁgl%&l?) ROVAL AIBCHAFT ESTARLITNMENT Appendix E

Page 210
Version/Date 1
Author I, S Grant

920C CURAL COMPILER
USERS MMANUAL

UNIT 2 : SOURCE

'CORAL"
" 'PROGRAM' EXAMPLE CORAL PROGRAM

'COMMENT* .

THIS PROGRAM HAS BEEN WRITTEN TO DEMONSTRATE THE

USE OF AND THE INFORMATION SUPPLIED BY THE 220C CORAL
COMPILER AND LOADER ;

'COMMOR' PLACE
'PROCEDURE' DIVIDETHEM ('VALUE''INTEGER',
'LOCATION"INTECER') :
JLABEL' DEMON 2, DEMON 3 ;
"INTEGER'" INT ;)

"SEGMENT' DEMON 3
'COMMENT " -
SEGMENT THREE USES THE COMMON PROCEDURE

'BEGIN'

VINTEGER' A ;

A:=06 ;

DIVIDETHEM (A,INT) ;
'END' ;
'FINISH!

BN

BOYAL AIRCRAFT ESTABLISHMENT

Reference Appendix E

J

t‘f Page 211 3
= @sne CRTAL CATIDIL ER =
a::ifia g@vuﬁi!ﬁ CU wAR Ei’mul"} - Verston/Da’[e l
M USERS RAANUAL . Author I, S Grant ’2
O
Lo a
i | k
L 4
. B
{
. . B _;!
UNIT 3 : SOURCE . 3 ' -
B B
| 'CORAL' : _3
'"LLIBRARY' EXAMPLE CORAL PROGRAM
[Ty
| ' COMMENT ' - i
o : THIS LIBRARY HAS BEEN WRITTEN TO DEMONSTRATE THE '
USE 'OF AND THE INFORMATION SUPPLIED BY THE 920C CORAL -
COMPILER AND LOADER ; ' §
. of
B .) —
. 'PROCEDURE' ADDTHEM / 2 ('VALUE''INTEGER' W ; ‘j
YLOCATION' *INTEGER' X)
s Xe=W+3 3
| ! N
- .
L 'PROCEDURE' SUBTRACTTHEM / 4 ('VALUE''INTEGER' Y ; }
e 'LOCATION' 'INTEGER' Z) ; i
. Z2:=Y-3 ;
[; "FINISH' B!
3 B,
[.
|| ‘j
.
L] N
.4
[.
| ! :
L 3
! " ,
.| !
N |
)
§
i 1
i \5
;;

Reference. Appendix -E

i @Z ;\.[? ROVAL AIRCRAFT ESTABLISKMENT 512

Page

B Version/Date 1

R USENS. MIARUAL Author I, S Crant
"‘ » : UNIT 1 - COMPILATION LOG
. - *GO ' (Pass 1A)

| ' *GO (Pass 1B)
»»»»» *GO (Pass 2) K

|

I
N
- UNIT 1 - OBJECT MAP
r
b
L - No object map requested
| !
\ i
. .
[
|
|
-
B]

Reference Appendix E

- : P ' .
~ ’E%Zg IE) ROVAL AIRCHAFT ESTABLISHMENT i
L o $Z0C CORAL COIAPILER Version/Date 1 |
FE Ugﬁﬁ5ﬁwAﬁggp Author T S Grant 3
— g 'E
M UNIT 2 ~ COMPILATION LOG }
*QUT =T'TY (Incorrect command - should have |
r *GO typed LST) ')
DEVICE SPECIFICATION ERROR (Output cannot go to TTY) 4
- *QUT=PTP (Reset output to PTP) ~
. *LST=TTY (Object map request) ;}
' *CKS - {Source checksum request)
= *GO (Pass 1A) o
N RELOAD TAPE 3
_ *GO (Pass 1A - repeat input of
| tape for checking) '
L] *GO (Pass 1B) B
*GO (Pass 2)
L .
4
B 3
L UNIT 2 - OBJECT MAP |
¢ PROGRAM EXAMPLECORAL -
N)
- COMMON PLACE A
| ! D O 000000 DIVIDETHEM]
L2 D 8 000010 INT .
B SEGMENT DEMON 3. §
Lo ’ i
L 4 000004 DEMON 3 - -
% D O 000000 A - ?
- A
L '?
§

Gh\E

Reference. Appendix ©

= ROVAL AINCRAFT ESTADLISHMENT
' 920C CORAL COMPILES .
! 2oC SOFMAL COMAPILER VerSlon/Da‘(e 1
‘ USERS, MANUAL Author 1, S Grant
- .UNIT 3 (LIBRARY) - COMPILATION ILOGC
*LST=TTY ' (Object map request) .
. *GO {Pass 1A)
*GO (Pass 1B)
™ *GO (Pass 2)

LIBRARY EXAMPLECORAL
LIBPROC ADDTHEM _ / 2

LIBPROC SUBTRACTTHEM / 4

UNIT 3 (LIBRARY) -~ OBJECT MAP

Ny Reference ix E
!;\}vj ROYAL AINCHAFT ESTARLISHMENT Appendix

B Page 215
= 820C CONAL COMPILER Version/Datz 1
_ USERS MANUAL Author L S Grant B
D ' i
= !
| LOADING INFORMATION -
. : .
B *DMP , ' (Absolute binary dump request)
*RAD=8 - (Radix=octal) -
*MOU=1600 . (Object program to lie in module Cf _
- ' . : ‘below location 1601))
L *141U=+20000 4
L *COMMAND ERROR »
) *M1U=20000 '
] *GO (Load Unit 1) A}
_ CORE BOUNDS 1052 1600 20000 20000 -
— . ke
PROGRAM ENXAMPLECORAIL J
1547 1274 DIVIDETHEM _
~ 3)
o COMMON 1271 .
o DATA 1302
. CODE 1531 =
N SWITCH. 1571
Lo ot
/ SEGMENT DEMON 2 .
N SEGMENT DEMON 1
L COMMON PLACE =
UNDECLARED LIBRARY PROCEDURES
M | ~
| *GO (Load Unit 2) J
PROGRAM EXAMPLECORAL
- 3
» COMMON 1271 'j‘
- DATA 1321 -
- CODE 1512 .
- SWITCH 1526 j} ,
L : .
SEGMENT DEMON 3
r COMMON PLACE '}
” UNDECLARED LIBRARY PROCEDURES oo
4 ’ -
| *GO - : (Load Unit 3) 3
- LIBRARY EXAMPLECORAL .
, LIBPROC SUBTRACTTHEM -
‘ 1503 "1316 SUBTRACTTHEM |
o)
N COMMON 1271
- - DATA 1323 }
. CODE 1502 i
SWITCH 1512
T .

o) '
@L‘;})P ROYAL AIRCHAFT ESTABLISHASENT

Reference Appendix E

:ﬁ ”~
] . Page 216 & 217
o 920C CONAL TOMPILER L
ane AL COMPILER Version /Date 1
| UaﬁnaaﬁWMéga% Author I S Crant
- " LOADING INFORMATION
(Cont'ad) .
LIBPROC ADDTHEM
B 1473 1310 ADDTHEM
COMMON 1271
DATA 1323
B CODE 1472
SWITCH -1502
*END
*GO.
PROGRAM ENTRY 1571
L
[
!

Reference

©
b5 Ao
“rl 44
v ¢ ’ o
o 5 T oD ediy s
g :
) * Tang odiy
e & Tana L g
g _ _ *oden
) Kxexqrg uoes
N C w X0z g8y jeedey /L
o 6
& 2 % d
R 35 3 rode
a. > « wexboxd yoee
0 I03 5%y 3eaday 9
- i . *adey *adwvy
W 7 . UOTIBNUIIUCD UOTIBNUTIUCD
m M » §ogguoranvg : yoes 03 yows Ioy
bl £ 09 adly g] gt "4 - 3¢ 3Ieedey °g pre aeadsyg °
i e K 8 OHNT. sy
8w i ‘Iepesx OHEHC QLA
- o W d . et GLA
5oE o e W Ut =cel d1d v 8 mﬁO@. odAL °y n« 09 8dliy °
FORRE S] 1o
in L@ Q) K *suoTado *Xopeal uf Iopesx ur
X arw ﬂﬁ N % - (.\. . = . 1«» = M!. N r . N v L
C oo 1 ad ¢ {09 sdir ¢ . mﬁow oddy *¢] adey soanog ¢ mmwu apancsy ¢
IR <4 - L .
Sl oo
o5, i] “ .
w0 iz i O 0T, . . 3
Eoo o o 960% Ispesxt utr - | “I9pesal ut *suotado “SuUO0T3CD
s x % o 03 x=bbtay -z |odey g1 sseq °z|ode3 vl sseqg ‘7 odiy 7 : od&y
L mﬂm V.i
% > M "BuUry *adesy T caden *adry
.y o Ty T - . ’
B = aomg Kxeulq AreuTq Axeutq g7 Kxeutrq vy Areurq ssuq
m 2 IB8PRCT PROT *I| z Sseg peoT T sseq peorf °"T{° Ssedg peol °T oIDBW PRGT °
n - .
JHaY0T , Z S5¥d d1l 8ssSvd .<,:m S8 d SSVYd GUDYNW
.\\.u g
!
1
1T [i P ﬁ o] 1 I I] ! 1 |

_

]

e

[S—
P
f
|
b
P
L
.

il

hiahvs
3

RO

05D LOADIR,

Rinary

ave o

Fode

N

we

BATEL

5D TOADER,

Binary

Iod

\H

. oy g n [&
LAA T mT QLE IS ‘{ndg SRS
H;Ea'-‘“ﬂibwa«_;é Box B e 8 i VALV IR
£Y &L e "“‘;.""'-rv' 11‘1\ £ ey Vi W= ’-s\:AJ.»;;
QIZ‘ 1 ? & a § i 18337 £ N
Wi ldis me\ Cividiid il LS gy

Author

100 - Feference P-OPD-1166

Contents

Varsion/Date 1/29.4.75

J G Slee

bt et
W N

o

wW

 CONTENTS
INTRODUCTTON

. OORAL IANGUAGE
UNITS Or COMPILATION
OBJECT CCDE LIMITS ON OOMPILATICN UNIT SIZES
RUNTIME FACILITIES
1.3.1 Multi-level programs
»1.3.2 Program sumchack
- 1.3.3 Data Area Initialisation

LOADER DESCRIPTION

OPTICHS '

2.2.1 Initialisation Options
2.2.2 Load-time Instructions
ORDER OF LOADING

2.3.1 Single level program
2.3.2 Malti-level procram
LIBRARY PRCCEDURE LOADING
INTERFACE WITH THE USER

2.5.1 Command language
2.5.2 Comand format

OOON CHECKING

OPERATING INSTRUCTIONS
DETATLED OPERATING INSTRUCTIONS
Qj‘”.'.u.m

3.2.1 Initialisation Commands
3.2.2. Load-time commands
OBJECT PROGRAM

PAPER TAPE CUTPUT SEPARATION

DIAGNCSTIC CUTPUT
I0ADER DIAGNCSTIC OUTPUT

- 4.1.,1 Fatal Error Messages
4.1.2 Non-Fatal Error Messages .
4.1.3 loader Software Error Messages
CORE UTILISATION INFORMATION

; . BOA PR PR AOTT OAVIIOANS S aferenc P--0OPD~

, (GATR MARCCH ELLIDTT AVICNICS Reference Hee oy
H ~ Page Contents 3
i QAans EYENMImTm FOANRTD e , -t

SLUL CAT DU LUAULH Version/Date 1/29.4.75

M Author * J @ Slee
- : .
. 5 LOADTR STRATEGY i

5.1 OBJECT ¥/C STCRAGE ALIDCATION .
- - 5.1.1 Description
1 - 5.1.2 loader Generated Information B

'5.2 DATA SPACE ALLOCATICN .
n 5.2.1 Data Areas 3
L 5.2.2 Allocation Strategy i
. 5.3 CODE SPACE ALLOCATION
- 5.3.1 Code Areas -
D 5.3.2 Allocation Strategy !
3 5.4 IOADER GENERATED CCDE & DATA 2
) 5.4.1 Fixed Data Area
i 5.4.2 Procedure Call Sequences R

5.4.3 Label and Switch Sequences
. 5.4.4 Program Entry Sequence .
B : 1
| . Appendix A Table of User Manual Sections amended or amplified by !
o this Document -
- Appendix B Object Machine Core Usage Diagram \
B Appendix C Example of Core Map "
‘ Appendix D Mininum Operating Instructions
" :
L ;
:
P "}
L]
B
L |
Kl

[

!
[» ‘
. ,
L 1
| |
N
L ‘f

_—

i 3 gl"a R B T e 3
ARCON ELLIOTT AY

B
Etia‘t 15050 Ul Yatedad £y

”E%lﬁﬁ ‘ Reference p-QPD-1166
Page 1

Version/Date 1 /29.4.75
Author J G Slee

INTRODUCTION

This document is for use in conjunction with the CAP Royal

- Adrcraft Establishment 920C CORAL COMPILER Users Manual

to describe the use of the Extended loader, and it is

assumed that the user is familar with that document. All
section nunbering is followed by a reference to the equivalent
section in that Manual. Any other references to the User
Manual are prefixed U.M..

‘'The minimm configuration for producing a loadable CORAL 66

program compiled by the CORAL compiler is an Elliott 920B (803)

with 6K of core store, a paper tape reader, a paper tape punch and a
teletype. The progrsm may then be run on an object machine with up
to 128K of core store, as specified at load time, :

The following description summarises the contents of each
chapter:

Chapter 1 : A description of the ways in which the Extended
' loader affects the usage of the CORAL language.

Chapter-2 : A description of the purpose of the Loader, with
a description of the use of the various options
and comrands available. An explanation of the order
of loading units of compilation. A description of the
general method of interface with the user.

Chapter 3 : A detailed description of the operating instructions
for using the Extended Loader. A description of all
options available to the user. Operating instructions
for use with the Object Program.

Chapter 4 : A list, with reasons, of all possibié loader error
messages., A deSCIlpthD of the core map produced
by the Loader.

Chapter 5 : A description of the way in which the Extended Loader
: . locates and produces the object program in Absolute
Binary form.

R J’emmc P-OPD-1166 -

N Page, 2

?é forsion /Date 1/29’4.75
o Author J G Slee

QTO0 SYTEMNEN §OAN
LH’NL o in..?i § Gecd s!&c;suiaj For LT]

rrrr

]
L

| S
|

1.1(1.1.1)

1.2(1.1.1.4)

-which may be conpiled and loaded by the Extended Loader.

RAL LANGUAGE

The implamentation of the CORAL syntax is as described .
in the 920C CORAL campiler User's Manual. The following
sections serve to amplify and supplement the features
relevant to the Extended Loader.

UNITS OF CCLPILATION

As indicated, there are four types of units of compilation

These are: a single program segment
a set of program segments
a Common segment :
a set of Library procedures

It should be emphasised that a Common sgement unit of
carpilation may only be leaded as a separate uhit and not at
the same time as other types of wnits of compilation which
will py definition contain the common segment.

OBJECT (OCDE LIMITS ON COMPILATION UNIT SIZES

Due to the object code strategy of absolute addressing
of data, the following limits exist:

(1) The data area generated by 1 CORAL compilation unit
must be 2 8K,

(2) The executable code generated by 1 CORAL campilation
unit must be < 8K,

(3) The data area generated by 1 CORAL program whether
compiled as a whole or in separate units must be
< 8K, since it must lie within module O. However '
core locations outside module O may be accessed as data
via indexed variables or anonymous references with
large indices. :

(4) The executable code generated by 1 CORAL program must
be < 128K and thcrefore if > 8K must be compiled
~in sectlons to adhere to. (2).

(5) The data area and exescutable cods generated by 1
CORAL program rust be < 128K although any core lccations
above 128K may be accessed via indexed variables with .
large indices.

full description of the runtime storage and object code
strategy is provided in Chapter 5.

» . e a - ,.‘._(,. 4 Ay < vl .
= 22,2 ig Rafarence P-0UD-1166
| - Pags 3
h Q2N VTR . s s
ULl Lavi Bl Version/Date 16/2 /76
] Author Various ;
. Pl

,,,,,

1.3(1.2.3)

RUNTIME FACILITIES

1.3.1(1.2.3.1) Multi-level programs

The interrupt handling housekeeping code is not generated
by the Extended Loader, the responsibility for writing and
including this is with the CORAL progranmer.

The operating instructions for loading and executing a
multi~level program are provided in section 3.1.

A OCRAL program may be split into segments which run on
different levels, a minimum of one segment per level, and

all levels must be present. - As for a normel program the

same Comron cenmunicator must accompany each unit of
compilation and is therefore shared between levels. The level
upon which segments reside is determined by the input of the
relevant Loader option before loading those segments.

CORAL code, i.e. Common procedures, should not be shared
between levels since 900 code is not reentrant, and it is
the responsibility of the user to ensure that this does
not happen - no.checks are performed by the Loader.
Similarly, care must be taken in updating Common data
which is shared between levels.

The user need not maintain four copies of Library procedures,
one for each level. The same Library tape may be loaded at
each level; the loader treats the Library procedures as
different on each level,

1.3.2(1.2.3.2) Prograem sumcheck

The Extended loader célculates the runtime sumcheck of the
executable code of a CORAL program and prints it out in
octal at the end of loading.

The sumcheck is the sum of the contents of all locations
included in the program's Unit Code Bounds including the entry

sequence (ignoring overflow). None of the dath areas are includ—
ed since data, unlike code, may be variable.

1.3.3(1.2.3.3) Data Area Initialisation

Note that the Loader does not include any clear-store
facility. It is up to the user to ensure that any areas
requiring initial values are either rreset or are explicitly

ooav
-

T

ne start of the user's program,., Remember
only set whan the nro: filrst lozdad:

acaimrad
[CRRINEY 1

i,

et

[AR——

Reference p_opp-1165

Page 4
Version/Date 16/2/67
Author - . Various

1

]

—]

o

-

L.

2(2.1.5)

2.1(2.1.5)

2.2(2.1.5.2)

2.2.1

LOADER DESCRIPTION

DESCRIPTION

‘The Extended Loader links together independently compiled

CORAL units of a program into an executable program, producing
the latter in the form of a sumuhecked binary tape (or

tapes).

It is purpose built and therefore does not allow CORAL units
of compilation to be linked with any othér program unit
produced via another compiler or asseabler.

The Loader accepts relocatable blnary fren Pass 2 of the
CORAL compiler. .

Note that the relocatable binary tapes produced by the compiler
must be input to the lLoader backwards, i.e. the character
produced last by the Canpiler must be input first to the
Loader.

VAs well as producing the absolute binary of the program, a

utilisation of core map is produced on the telelype (unless
suppressed by the user.), see 4.2,

During loading, detection of an error which is not

considered disastrous does not inhibit the loading process and
execution of the object program is at the user's discretion.
However, an irrecoverable error will cause the loader to

halt. The lLoader may be re-entered to recomnence the loading

process, without reloading into core.

It should be noted -that an incomplete program, i.e. a subset
of the units of campialtion comprising the whole program,

may be loaded and executed similarly at the user's discretion.
OPTIONS

The following options are provided by the Loader using the

standard Extended Loader user interface, see 2.5.

Initialisation Ontions

The options included in this section are all concerned
with initialisation. They cannot be used once a lLoad-
Time option has been input.

1

(BIAVEY

RAATIONIAN DELIATT ARYVIALUAD Peferencs D_CPD-1166
3 ?* ; &g FY L EREVEE I & 1 9]
MARDUNT ELLIUTT AU _

Frisliiy 4 ;um.uﬂ

P')r" 5
\/ﬂrsao-w/Date 16/2/76
Author Veriont

pr\'\&"@ r\l'-‘?"f"
l}f Uls LAE

~

2.2.1.1

2.2.1.2

2.2.1.3

2.2.1.4

D.2.1.5

ing vrogran (AUT)

The user can specify that he requires his object program
to be self-triggering, on being read into core.

Thé default is that this is not required.
Object Machine Core Size (COR)

The minimum number of modules in the object machine can be set
using this cption. Note that even if the actual core is not

present in the object machine the value input should be the
module number of the highest wodule to be used, plus one.

This option also prints out the object machine configuration.

The default is that the object machine consists of not less
than 4 modules i.e. modules 0O-3.

Core Utilisation Map Suppression (MAP)

The BExtended Loader normally provides information on the
object program's utilisation of core, as units of compilation
are loaded. However, there is an optlon to suppress this
information., All error and warning messages are still
printed on the teletype along with the entry point, level

and checksum information. Input is still via the teletype.

Module Bounds (MUB, MIB)

The upper and lower boundé of any module may be changed to
fit any object machine constraints.

“The defaults for each module are the normal extremities of a

module, namely 8191 and O respectively, except for module 0
where the lower bound is 8, and the upper 8166.

Radix of Input/Cutput (RAD)

"The ‘radix of the numbers input by the user on the teletype

during the specification of options, and those output

on the teletype by the Loader i.e. core map, entry point
may be either octal or decimal. The exceptions are error
nunbers which are always decimal, and the code checksum
which is always octal.

The default is decimal.

e

Doarrrand

Refererce P-OPD--1165
Page 6

3 . -

i - Version/Date 1/29,4.75

Author J G Slee

| ELLIOTT AVIONIGS

AR WA A DTN

Yoon bun bl
C} PR LN 7%
; P OES T N GmgAr dd
Jaibu ST CuLIE

2.2.1.6 Tape size (TAP)

The object program can be output on more than one tape if

the user does not want a tape to be unwieldy. He can do this
by specifying the maximum number of words to be output on
any one tape. Fach tape is preceded by a tape number in

—
[|

I

P
-

2.2.2

b.2.2.1

P.2.2.2

2.2.2.3

_legible tape code, which must not be read. The object program

tapes are checked to ensure loading of the tapes is in
sequence and that each tape is read correctly.

The default is a maxmmn size of 16384 (deéjinal) words .V

load-Time Instructions o 4

. After all the required initialisation options have been

input, the following may be input before loading an RL3 tape.
Unit of Compilation Code address (ADD)

The user may select the object machine base address of the code
in a unit of compilation. He otherwise may choose the
module in which it is to be located. Previously loaded code

can not be overwritten.

The default is to place the unit's code in the locations
chosen by the Cptimum Location of Units of Campilation
Algorithm, see 5.3.2. :

End of lLoading (END)

Termination of the loading sequence, incorporating the
resolving of procedure references, must be terminated by

the user.

The defaultvis to continue accepting more units of
conpilation. :

. Ehtry ‘address (ENT)

The o’r_Jjeot program's en{try point is the first statement in
the first (last) segment compiled (loaded) in a specified
unit of compilation. .

The default entry point is the first statement in the first
segment compiled in the first unit of compilation loaded.

1

Page 7

Version/Date 16/2/76
Author -

Reference P-OPD-1166 .

ermrend

[

2.2,2.4

2.2.2.5

12.2.1.6

2.2.2.6

2.3(2.1.5.3)

Process Relocatable Binary Tape (GO)

On recelpL of this command the Extended Loader reads and
processes the next unit.)

- Program level (LEV)

The precise operating instructions for loading multi-level
programs are given in 3.1. The loader runs in either

. single-level mede or multi-level mode.

The default for the level of a unit of compilation when
loaded normally is level 1 and therefore a single level
program will always run on level 1.

Relocatable binary version (RLB)

The Extended Loader can accept relocatable binary tapes from
current ox obsolete versioans of the Compiler,
The version can be specified by the user.

’The default is automatic recognition bv'tbe loader.

Undeclared procedures list (UND) _ '

If, after processing a unit of compilation, there are still
references to undeclared procedures a message warns that there
are undeclared Library and/or Common procedures. The user
may request a list of these.

ORDER CF LOADING

2.3.1(2.1.5.3.1) Single level program

The relocatable binary paper tapes for the units of
conpilation may be loaded in any order excluding the
library tape(s) which must be loaded last.

The entry point of the program is assumed to be the first
statement of the first segment canplled unless chanbed by

- the user, see 2.2.2.3.

e.g. segment tape 1
segment tape 2

segmenf tape
Library tape
Library tape

N 2

. lerurv tape M

| SO

[N

[P

i

S = e g E - e o % . - PN
VARCONL BLLIOTT AVIORBES Reference P-CED-1166
ggsﬂi‘sbbmé cLLIUE | AYIUIILS

v Pegeo 8
£RFS % PR RS0 P Ry 8 £ R T Iven
LS £33 1 {f Gatrid £ 4532 kLT . N
GAUL Luih%-jw&gw La.fr"a%;m_s arsson/DatL 1/29.4.75
Author J G Slee

ml

T

]

;fk"u’i

|

SN

—
| —

 —
| S

2.3.2(2.1.5

.3.2) Multi-level program

The relocatable binary paper tapes for the units of
canpilation of a multi-level program must be loaded

. together for each level but may be in any order within the level

followed by the library tape(s) for that level. (The levels
may also be loaded in any order). The same library tapza(s)
may be read for each level and the Loader will create a Copy
of each relevant procedure per level upon which it is used.
The entry point »f a level is assured to be the first
statement of the first unit loaded on that level, except

in the case when the ENTry option is used. In this case,
the entry point for that level will be the entry point of
the program.

e.g. segment tape 1, level 1

segment tap@ N1, level 1
Library tape 1
Library tape M

segment tape 1, level 2

segment tape N2, level 2
library tape 1

library tape M

psegment tape 'l, level 3

.
9

Segment taﬁe N3, level 3
library tape 1

PRTXS

library tape M

' ségment tape 1, 1level 4

segment tape N4, level 4
Library tape 1

library tape M

_1

]

Tl “feference . poOD-1166
és.u,t-.scvfza"b“_" & ’ -
: Page o}
GO TV TED POANTD g
L DAL LU - Version/Date 1,909 4 75-

Author J G Slee

- The concept of hardware levels can also be carried across

to software levels. More than one set of units of compilation
and library tape(s) can be loaded on one hardware level, so
that more than one copy of a library procedure may be generated
cn that hardware level. Before each independent set is loaded
the LEVel option must be used to specify that the following

set is to be loaded on the same level., As specified above

the level entry point is either the-default (the first statement
of the first segment comiled in this set) or the first
statement of the first segment in the unit of compilation
specified by the ENTry option; but note that in both cases

the hardware level entry point output in the Fixed Data area,
and therefore that hardware level entry point when the program
is run, is the entry point of the last set (of units + library)
loaded on the hardware level.

As an example, if more than one set of units + library are to
be loaded cn hardware level 4, the following would be added
to the above loading sequence

fSegmenﬁ tape 1, level 4(2)

.
’
»

segment tépe S2, level 4(2)
Library tape 1 .
Library tape M

.
*

segment tape 1, level 4(x)

«
.
.

segment~fépe Sx, level 4(x)
Library tape 1 -

Library tépe M

S

3

HER PAmeanee grg § gy F\%}ES’EF’\}?{"‘Q Raferonce
AViEnbia cebildi | AVILELLS P--0pD-1166
Pace 1c
sl TataliwhViselidtintol oW Mo T oYy ”
IR a,..z\ivz‘,.z»w;,u IR aju&;% Version/Date 1€/2/76
Author Various

]

| SO

A

iy
e

.

2.4 (2.1.5.4) LIBRARY PROCEDURE LOADING

2.5(2.4)

As described in 2.3, the Library tape(s) are loaded after
all units of compilation for the current level. The
Extended loader performs a scan of each Library tape and
loads only those procedures which have been referenced
previously, i.e. having the same Library procedure number.
Any number of Library tapes may be scanned until all
referenced are satisfied. The Loader outputs a description
of the Library procedures loaded, sée 4.2,

The following points should be noted:

1) The Loader performs no check on duplicate Library numbers
and simply loads the first. procedure encountered with the
required number (i.e. last compiled if both are within.
the same unit) - all subsequent procedures with the same
number being ignored. This therefore allows the user to
redefine Library procedures on that level.

2) Since camunication with a Library procedure is via the
Library procedure number and not the name, reference to
different procedure names which have the same number
will cause calls to the same procedure at run time.

3) The Library tape supplied with the 920C CORAL Corpiling
System, CAPQF, contains the Compiler Floating Point
Library Procedure which has the Library Procedure
Number 1. The user should therefore avoid the use of
this nusber since redefinition of this procedure would
no doubt have disasterous consequences.

4) Library procedures which have not previously been
references are simply ignored -~ they are not loaded.
The user should therefore ensure that any Library
procedure called only by another Library procedures
is loaded after (i.e. caipiled before) the Library
procedure(s) calling it. This will save multiple
reading of any one library tape.

-INTERFACE WITH THE USER

Command Language

Communication between the operator and the Extended losder

- for selection of loading options is by means of commands

typad in at the teletype in response to an invitation to
type from the loader.

B

-

RAATICEINT BTY R AT LYEIARE I N - Reference P-OPD-1166
IR LiLkﬂ §;% 4170 {haed :
. ' ' Page 11
GO0 § orsion /Do
i dn L b M&raon/Dee 1/29.4

Author J G Slee

/i)

3
ol

2.5.2(2.4.2)

Comnands are split into two types of command:
Intialisation and Load-time, see 2.2. Once one load-time
cormand has been typed in, no more initialisation camnands
are accepted.

If an Initialisation conmand is typed with incorrect
parameters it can be reinput with the correct parameters.

Command Format

The invitation to type a comand issued by the Loader is an
* at the start of a new line,

A comand string is of the format
| ~ COMMAND er |

or COMAND = parameterstring cr
where parameterstring is defined as

DARAML
or DPARAMI, DPARAM2

Only the first three characters of the COMMAND are used
(except for the GO canmand, where only two are used), the
COMMAND being terminated by either = if parameters are to
be used, or c¢r otherwise.

The parameter(s) PARAML and PARAM2 are either alphabetic or
nureric. In the case of alphabetic parameters the last three
(or two in the NO case) characters of each parameter are the

" ones accepted (or rejected if invalid). In the numeric

parameter case there must be between 1 and 6 numeric
characters in any valid parameter.

A parameter is terminated by a () if there is a second
parameter to follow or cr otherW¢se

A description of all the commands and their associated

. parameters is provided in chapter 3.

-To remove a character from the input buffer if it has been

incorrectly typed, a<may be typed; ne characters will remove
n characters, if typed before the cr.

A<may be output by the ILoader if the character just received
was of invalid parity. The character will be removed from the
input buffer.

A linefeed typed before the cr deletes the whole of the

“camand being input, and an invitation to type a fresh command

string is given.

- All spaces are ignored.

osroad

[T

N
[N—)

1

Page 12

ﬂ Author J G Slee
b 2.6(2.5.1) COAMON CHECKING
§ The followmg checks are performed by the ILoader on the
| Camon commmicator and its associated segment(s) for the
units of campilation of a provram)
™
| 1) The size of the runtime Comron area is the same Ior all
‘ units of compllatlon :
F\ | 2) A Comon label is only declared bnce.
T 3) A Comon SWl'tCh is only declared once.

[

L

4) A Ccomon procedure is only doclared once and all are
declared. :

There are no other checks performed on Common and it is
the responsibility of the user to ensure that the same
Common comunicator is used with each unit of compilation
of a CORAL program and that Conmon procedures are not
shared between interrupt levels. It must be noted that the
Loader only loads the first Comron area it encounters - all
other Camons are simply checked as described above.

.

IOTT AVIONIES Reference p_opp_1166

Version/Date 1/29.4.75 -

]

BAP

BCOM ELLIOTT AIORIES Reference P-OPD-1166
VLU el AV ORI
) Page 13
At SVTIMNER §NATED L
AUL BA T oRUCL LUAUER Version/Date 41¢/2/76
| Author Various

—

.

]

1

,{.*_

M~
[

S

L

[

—
IS

—

A
S

[~

(B

3

OPERATING INSTRUCTIONS

3.1(3.1.5

1)

2)

1) DETAILED CPERATING INSTRUCTICNS

Ioad the Extended Loader binary paper tape using the

hardware initial instructions.

If the Extended LOa@Gr is to be run in an 8¥X machine
OR the m Lﬂlﬂb is & 903, 920B or 220M, use the tape:

"CORAL 8Y AXTEHDED IC%)E?, Binary Fode 3%,

If the Extended Lozder is to bhe run in & 216K machine
AND the muchlre 1q a, 9 S or 9?00 use the tape:

o A N
Dinaery Tode V.

The only significant difference between these two
versions of the Bxtended Loacder is the amount of
dictionary space availsble inegide thems-

3066 woxr

ds in the €X version,
6491 words

in the 18X version.

Apart from this, the choice of version has no
girect relationship with the size of the run-itime
mzcnine: either loader can theoreticzlly handle
128K programs, and programs for any of the above
900.-Series machines.

Trigger to 8 using the hand-keys.

—

1

-

Page 14
Vers im’)/DS 1 ;3!:’2/? S
Author Tarious

]

—

]

[E—
[

(-

3)

4)

5)

Type the reqguired In1t137154111n ccgnmnds on the teletype;
see 3.2.1,

An * will be prlnted on tha teletype as an invitation to
type each of these

Place a relocatable binary paper tape of the program in the
paper tape reader “The end of the RIB tape

last output by Pass 2 of the compiler should be read first
by the Loader

Type any requlrad Load-time optlons on the teletype, sece

section 3.2.2

ENTry if thls is the unlt whose first executable
instruction is to be the program (last time)
or level entry point.

LEVel before the first unit is loaded on thié level.
When the second and subsequent LEVel commands

are used, a new absolute binary tape is begun. The

multi-level and single-level options are mutually
exclusive.

ADDress If the unit to be laoded is to be located by the
user; see 5.3.2 for details of the use of this
option. : . '

-6) Type the GO command, whereupon th RIB tape will ke read

in and processed. At the same time the absolute binary
tape containing the object program will be produced and
the core map details printed on the teletype (unless
suppressed at step (3) by the MAP option).

" 7) On completion of the unit's processing the message(s)

UNDECLARED CCLON PROCEDURES

UNDECLARED LIBRARY PROCCEDURES
will be output on the teletype where appropriate followed
by an invitation to type. The onerator may use the

UNDeclared option to obtain a list of these undeclared
procedures.

8) Repeat steps (4) - (7) for each relocatable binary tape
of the program to be loaded. Do not forget to keep to
the correct loading order, especially in the case of
multi-level programs; see 2.3 and 2.4. '

9) When all program tapes have been lcaded and all library
- procedure calls are satisfied on the final level
type ‘fhe TXD command. i
The absolute binary tape(s) for the loadable object
program will be comleted and the entry point, entry level
and ccde checksum will be output to the teletype.

10) The sequence 2-9 may be repeated for another program

vithaut reloadine the It
&

wued Loader,

PPN

et

S

]

S —

© Page 15

1) READPON TLEINTT Ayniso . Reference P-OPD-1166
[[\;}j 2) §?s§s{3§%bﬁz‘i§ FLLIOTT AVibdiGs
"1 5 L ‘

y 3 \ : .

u AR ~ Version/Date 1 /2.4 .75

Author J G Slee

-1

LT

e

]

ey

A
|

- -

ey

Lo

| —
[

COMHANDS

3.2(3.1.5.2)
For cammand language format see section 2.5.2.
3.2.1 Initialisation Cormands
CCGEAND. PARAYETERS | DEFAULT MEANING
AUT YES ’ Object program tape to
: ‘ { be self-triggering.
NO . NO !
i
COR [m] =4 - No. of core modules in
1zmg16 - object machine (i.e.
: maximum module number + 1),
! This remains unchanged if
i the parameter is omitted.
i The new object machine
» configuration is printed;
! see 4.2,
MAP * Object program core map
YES YES f {is red
NO B ilis not} requlrf'e
MR m,n " 1=0 ' The object machine module
Osmsmax moduleg except for ! m has an inclusive lower
Osn<8191 =0 where bound of n. -
n=8
n=8192 Module m has no core
' { available,
MUB m,n n=8191 The object machine module
Osm<max moduleexcept for !m has an inclusive uppe
' Osn<8181 * =0 wherq bound of n. -
’ n=8166
=8192 ‘ Module m has no core
available.
RAD ‘ User interfacé number radix
- OCT : _ - Octal
DEC - DEC , - Decimal
TAPe ¥ W=16384lo Maxinum nurber of

object code words to be
output on any one
absolute binary tape.

v— [t

7

Qq:’» =Y gk fs ¥ - '3
HHEENCE pCPD-1166
16

oy

Page

-3
;

-

T

fersion /

Author

wie 16/2/75

 Various

]

J
|
I

3.2.2

Load—time camands

COREIAND

PARAMETERS

DEFAULT

MEANING

ADDress

m ,n
Ogngnax module
0=n=s8191

Unit of ccmpilation
location decided by
Loader (gee 5.3.2)

's The start of the
unit of compilation's
object code notlnpludlnq
loader generated code, se
section 5.3.2.

mAnodule number
 n=module relative addres

YES
NO

NO

All RIB tapes

hiave been loaded
@ave not

—

ENTRY

none

Entry point is
first executable
word in first unit
loaded.

Entry point is first
executable word in the
unit loaded after the
next GO command.

none

none

Start processing
RLB tape in reader.

LEVel

=0

1=1,2,3 or 4

Level at which follow-
ing units are to be
loaded.

For a 81ng1e—leve1
program the LEVel
commnand may be used a
maximum of once (1=0)
For a multi-level
program a LEVel cormand
with the appropriate
parameter must be typed
before loading the

units for that level.

R1B

nition

autcratic recog-|]

RLB format.version, ;
uge "3Y for current i
iczus ¢of Compiler

UND

none

none

Lo

Print out a list of un-
defined procedure names
which have been refer-
enced.

lV

a

]

Reference P-0OPD-1166

(‘age 17
‘ Version/Date 1/29,4.75
. Author J G Slee

3.3(3.1.6)

3.4(3.3.1)

OBJIECT PROGRAM

After loading using the 920C Extended Imader, the object
program is on the absolute binary tape(s) produced. It is

not in core,

To execute the absolute binary object program:

1) Ioad the first absolute binary tape in the object
machines reader, ensuring the legible tape number will
not be read, and load using the hardware initial
instructions.

2) Repeat step 1 for each absolute binary tape produced,
‘loading in strict numerical order, until all have been
loaded. ’

3) If the AUTSYES conmand was used, execution of the object
program occurs when the last absoluteé binary tape has been
" loaded. : .
Otherwise, trigger to the entry point provided, using the
hand--keys. : '

PAPER TAPE OUTPUT SEPARATION

If the paper tape punch runs out during the loading process
the user has no choice but to reload the paper tape punch, -
retrigger the lLoader, and start loading the program again,
from the beginning. He may not runcut blanks during the
loading sequence. It would be advisable therefore to ensure
that there is enough tape in the punch before starting the

- loading of a program.

In the case of a multi~level program, the Loader starts a new
tape for each level loaded. There will be at least 4 tapes,

therefore, for a multi-level progranm.

" When a tape has been split by the Loader into more than one

absolute binary tape, the user may subscguently physically

divide the tapes between the end of the "tail' of one section

and before the beginning of the "head" of the next. It is

suggested that the best place to split the tape is just before

the legible tape number, in order to exscute the loading into
the object wmachine in the correct sequence.

It should be emphasised that tapes must be loadgd in STﬁ%CT
NUMERICAL, SEQUINCE, since each new tape (exclu@1ng the first)
checks that the checksum of the previous tape is the same as
the checksum stored on the front of the current tape.

-

Feference P-OPD-1165 |

Page 18
Version/'Dai'e 1/29.4.75
Author J G Slee

—

4 DIAGKA““IC QUTPUT
4.1(4.1.5) LCMDLR DIAGNGSTIC OUTPUT
The format of error messages printed on the teletype by the
Loader is:
©>> nnn [message]
where nnn is a three digit error number
The error number is followed by a message except in the case
of lLoader software errors (see 4.1.3).
4.1.1 " Fatal error messages
Number Mossage Meaning Result
100 AQM/EPT Too much use is being made Loading Halts
OVERTLOW of the ADDress option, resulting
in the Loader's available Core Map
having too many entries due to the |
fraguentation of core.
OR: The number of External
Procedures called on this
level is too high,see P-SYD-1166
section 5.
101 INVALID Tape read is not a valid RIB loading Halts
TAPE tape, or has been misread.
102 PARITY Character on RIB tape is Ioading Halts
FAILURE invalid OR User is attermpting
: to load Version 2/3 RLB vhen
Version 1 type is expected.
103 CHECKSUM Checksum failure on input 01 Loading Halts
FAILURE RLB tape : : '
14 PRL/ICL Too many external procedure Loading Halts
) OVERFLOW references on this level; CR
_excessive use of the ADDress
option, therefore not using ‘
the Optimun Location of Units
of Compilation Algorithm,scee 5.3.2
resulting in too many inter-
module conmunication code
blocks, see 5.3 and 5.4.2.
CORT v+ |This is an object program code ‘ .]
105 CO%E FULL~ overflow. An attempt is being e Loading Halts
made to reserve code for this ‘
unit of ccopilation: no free
area large enough can be found
A different lecading order or
different use of the ALDIOSS
wy‘i.(,ll Ty o SULLussE J.L,A_.A. u=e
is mad@ of the obgﬁot code core

ETAV

A ”‘gﬁ%ﬂ"”
{esfi ESLL‘?EE

g-.sg i,gm,nrsvm %:“FaFlwf’a

b b 1;5;

arvey

Page

#1 ﬁmw,e-—-vwngwc.,gn;\ "ﬂ!’-wa
aanr Lg(1L

3334 3
CaA DAL DN

Author

FEA T NUS o Relerence p-OpD-1166

19

~ Ll , Version /Date 1/29.4.75

J G Slee

P&

Number

£ wl
Message

Meaning

106

107

108

109

OORE FULL
. =DATA

CORE FULL
DATA .

CORE FULL
DATA

CORE FULL
DATA

-into any of the available free

- the data requirement must be

This is an object program data
overflow. The campiler-
generated data area, see 5.4.1,
will not fit into the avallable
space in module zero. As this
is the first data area to be
allocated the MLB and MUB
options for module O should be
altered to increase the
available core.

This is an object program data
overflow, The camon area

is too large to fit into the
available space in module O.
Either the cammon size must be
decreased or the MLB, MUB
options altered to increase the
module zero available core.

This is an object program data
overflow. The data area,
including local data, constants
address constants and library
parameter blocks will not fit

area(s) in module O. More
space in module zero must be
made available for data, or

reduced on subsequent loads.

This is an object program code
overflow. No room is left to
take the 10 word area for the
entry code sequence, see 5.4.4.

As this is the last area to be
allocated, the area available

in module zerc should be increased
or the data requirements decreased
or a unit of campilation placed

in another module.

Lbading
Halts

Loading
Halts

Loading
Halts

| ——

2
-t

Lot mssna

(EIAVF

2

SRFIT EANTIa e 8 oo e
G Iy N fagiil gk
Walis DAL UL

WS R Tataty
WA

FoT R B e e e fl'&!;fu'??iggf‘ﬂ
S IR ST RCRILINE]
§ I 3 M HANITLO

Yianielsty

s £ 0 g
o brded B 4 9
“sm%x.,éz“".!,.j» T bt ¥

Refererce p_OpD-1166
Page

20

Version/Date 4 /29.4.75

UNKNOWN

to any vaid user command.

Author J G Slee
Number Message Meaning Result
110 CCMMON 'CHECK | The size of common in this unit Ioading Halts
' FAILURE oi compilation is not the same
as that of previcusly loaded
unit(s) of compilation OR a
Cammon segment unit of compil-
ation has been loaded..
111 LAS/CLS The loader label stack has Loading Halts’
OVERFLOW overflowed. This mav be over- :
. come by loading the units of
compilation with the largest
nunber of forward references
first and those units contain-
ing the most ccomon label
declarations last. see P--SYD-11£C
seclion I, ‘
112~ INVALID Tape read is not a valid RIB Loading Halts
113 TAPE tape, or has been misread.
4.1.2 Non-Fatal Irror Messages
Nwm&* Messagé Meaning Result
400 INVALID TAPE| Tape being read is not of a The tape is
BLOCK N valid RLB format. Possibly rejected. An
the tape is being loade asterisk is out-
"back to front". ' put awaiting
' instructions fram
the teletype.
- 401 ARMAND.. First three characfers of the The command is
conmand input do not correspond ignored and an

“asterisk prompt

is output awaiting
a valid command,

EULIOTT AY

Raferemce P-0PE-1168

p A ¥
M AL e Pags 21 :
H ﬂiF~eg £ r‘”\a & ErT 5T) !’F\lﬁﬂr\" a
L‘ S&a%d‘tﬂ.’ fad % § Ea . \4‘[S lOﬂ/D&w 1/2J [7D ‘
— Author J G Slee ,_
L e - '; c-._.-z
1{_“ M
{J. Numberl licasage Meaning Results
M 402 CCEMAND "{This coomand cannot be input | The camand is ignored ;
L ILLEGAL at this stage in the loading | and an asterisk prompt “
. sequence, is output awaiting a
™ valid load-time comrmand.
‘ | See 3.2 for details.
- 403 | PARAMETTR The parameter(s) in the The command is ignored
;‘ INVALID cormand string are not valid | and an asterisk prompt |
Lo ' or maybe inconsistent. is output awaiting a
' valid comnand. -~
L] i . _
o 405 LAST ILEVEL No RIB tape has been sucess- | This command is ignored
— NOT 1OADED fully loaded at the level and an asterisk prompt K
i | i last specified OR in the is output awaiting a »
L] milti-Jevel case, not all valid command.
iLEVels have been read in.
1. :
[J 406 COMMARD One of the mandatory This comnand is ignored .
ERROR | parameters is missing. and an asterisk prarpt
M i is output awaiting a ;
L] valid command. 3
B 407 LIERARY IOADID An attempt is being made to | This tape is rejected
Li ON THIS LEVEL | load another program tape and the loader awaits
-/ after a library tape has been| instruction to change
o 1oqd°d at this level OR the level, or continue
[| ‘LEVel option has not been loading at this level.
L j input to change level after
lth LIBRARY tape(s) have
r ! been input on the prev1ous
Lj I1eve1 .
| 408 INVALID TAPE | An attempt is being made to |me tape is rejected.
L load an invalid RLB.-tape OR | An asterisk prampt is
o an RLB tape has been output avaiting
i incorrectly loaded. instructions from the :
| | teletype concerning the
L next tape to be loaded. :
{’ 409 | LIBRARY NOT | A library tape has been . The library tape is |
L EXPECTED loaded at this level before |rejected. An asterisk
. a program tape has been prampt is output await-—
[l accepted. ing instructions from
L

I

osae

the teletype for loading
a program tape at this
level.,

GU K'S im

[r g & Yiade'e 3 85 Qrz BTy
5 5 -.-«5 \la L\‘IE-EL U% a !;:Q&!Ex‘si'hbt}

- Reference P-OPD-~1166

Page . 22
- Version/Date 1/29.4.75
: ! Author JC‘ Slee
1 Number | lMessage Meaning Result
T 413 ADDRESS NOT The ADDress option has been | An asterisk prampt is
i AVAILABLE used specifying a previous- | output awaiting furtherx
ly allccated area OR the ADDress and GO or just

[address specified overlaps a GO option input.
L module boundaries.
{ 414 NAME DECLARED | The Common procedure desig— | All references to the
o TWICE nated has been declared in Common procedure apply
— procedure a previous unit of compil- to the first declarat—

} name ation. ion; the second is

: ignored, though still
. - loaded. ILoading cont-
’F inues.
H ‘, ’

415 - | INVALID TAPE | see 408 see 408
i 420
L ~
B 421 COMMON TABEL | A conmon lahel declared in This label declared
L DECLARED the current unit has been in the first unit is
TWICE declared in a previocusly used. Ioading

a loaded vnit. This includes | continues.
L‘ the case wnere this tape has

’ been loaded previously.
‘L 422 INVALID TAPE | see error 408 see error 408
L
L
N
-

Y Y FAYITATIE e Foference P-0OPD-1166
G Hfm 0§ efoe .

m S UL S 1 | PBQS 23
| GUOe T o e
L il Basv i i Version/Date 1/29.4.75
— Author J G Slee
N
- ;
! . 4.1.3 Loader Software Error Messages
— In this case only the error mmber is output. Error
i numbers are 700-999 and are all fatal errors, causing
s . loading to balt. They arise due to Loader 1ncons:1stencies
. "~ and should be referred to Maintenance. - :
P
L 4.2(4.1.5.2) (ORE UTILISATICN INFCR miATIO’\I
i Object Program Core Map

|

‘ The following information is output by the Loader, if the
r core map is not suppressed by the MAP option, when the CCRe

! cormand is used. Note that in all cases core area bounds

) are inclusive

| OORE AVAILABLE

MODULE - BOUKDS
P‘ 0] : <current 1owe1'/uppnr bounds® >
L] 1 etc.
ete.
B |
U For each unit of compilation all that is relevant of the
following information is output.

i PROGRAM
= LICRARY ‘

- LLION <name of unit/sub-unit of compilation >
] SEGMENT | |
- LIBPROC
[: PROCEDURE < name > ENTRY <address >
L]) | LINK * < address >
' ‘ FIXED QONSTANTS AREA <lower bounds> - <upper bounds>
L MON ARFA __ " "

DATA AREA ; " v "

| CODE AREA " "
L SWITCH ARFA o
a UNIT CCDE BOUNDS <lower bounds» - <upper boundsy
|
- The following messages are ocutput if appropriate
UNDFCLARED COSMON PROCEDURES
= UNDECLARED LIBRARY PROCEDURES

PSat

=

e e e gy gen f e

Louy gl boorn SRR
i"d’ﬁ: WE el B Ewt-_‘-{«nii»,;«’

Ratgronce P-OPD-1166
Pege 24
Q 4 ';, 28

Version/Date 1/29.4.70

Author J 'G- Slee

[a—

{oa"w }

By invoking a suitable option, ‘the user can
of the undeclared procedures, thus:

UNDECLARED PROCEDURES

LIBRARY

At the end of loading a level the following message is printed
LEVEL <level numbery JENTRY AT élével entry points

At the end of loading the following nmessage is printed

PROGRAM ENTRY SEQUENCE <entry point » - <upper bound>

<level numpers
CODE CHFCKSUM <checksum of code in upits:»(OCI‘AL)

AT LEVEL

¢ procedure name

then obtain a list

L=
 Ju

1Y ALY TATA Raference P-OPD-1164
LLIUT T AViud ’

r7y

AR
?"é' kst

v
~1 Page 25
’ - oo eATER Version/Date 1/29.4.75
1 Author J G Slee
! 5. LOADER STRATHGY
= This chapter explains the algorithms adopted by the Loader
% to optimise the location of compilation units within the
‘ object machine and describes the additional code and data
- areas generated by the Loader. -
L ’
L Instructions generated by the CORAL compiler are not
changed by the Extended loader save to resolve addresses
{W and make them core relative rather than code relative.
L For details of object code segquences generated by the
CORAL compiler for individual data declarations or
o source statemnents see chapter 5 OCRAL Campiler Users
: hanual
— 5.1 OBJECT MACHINE STORAGE ALLOCATION
| t -
= 5.1.1 Description
T; Object code of a CORAL program contains data and executable
! code held statically at runtime in the object machine core
store.
|
LJ Data resides in store in module O and is
~ absolutely addressed. Code may reside in any core store
r module,
N . : ~
= Each unit of compilation camprising a program has a data and/or
;I code area associated with it.
L The following diagram describes, in outline only, the runtime
storage allocation of a program comprising a number of units
P of compilation. The diagram assumes that no operator
| intervention has been taken to adiust the location of the

code for a particular unit of compilation and that loader
optimisation is inoperative. As will be seen in 5.3 this is
a simplified version of the actual loading algorit

| NRE : S TRFA Y FEOYT T ALV NI " Reference P-OPD-1166
AP MARCEND ELLIOTT AViGiis Fetenee
< : 2ge C o
HAHER Version/Dutz 1/29.4.75
Author J G Slee

(OOr VTN
Gl DAL Didhined

MODULEAO \\\\\ \\\\\ \\\ \\Q_ 8 (MOL).

FIXED DATA
COMMON DATA

UNIT 1 DATA
UNIT 2 DATA

DATA AREA

UNAT_K_DATA]
ENTRY SEQUENCE
NN N N N NS LSS

MODULE 1 / | \/ / / / > /
/ / / ’ / /,/ |

L

G——--8166 (MOU)

/!

\\

/) /
/// // /// /;////

UNIT K CODE
: / / / / / / / / // 1/ / / /

MODULE M+1

UNIT K-1 CODE
:/ [:.5
H
MODULE N L/ [[7 y A AV AR AT S Y S,
' UNIT 3 CODE
UNIT 2 CODE
UNIT 1 CODE

Simplified Diagram of Object Machine Storage Allocation

Note: -address 8 in module O equates to the MOL of U.M. 5.1.1. This
) is a default address and can be varied by user cammand.

/// unused core areas

. rescribed core area
Q§\P

M ELLIOTT ;;n%g - Pt BoeD-ck
Page 7

3 PV TERINT 59 AR : ' _
92 il wAl miguma,. LUS - Version/Date 1/29.4.75
[Author J G Slee

—
| ——

5.1.2

- The Loader loads the object program within the module bounds

set by the user to describe the intended object machine.
Normal default values for these bounds are:)

‘Module O lower bound -~ - 8

Module O upper bound ~ 8166
Module 1 lower bound 8192
Module 1 upper bound 16383 .

o« o0

24576
32767

Module 3 lower bound
Module 3 uppzr bound

Comands available for varying the number of object machine
modules and the bounds within each module are descrlbed in
3.2.1.

In general the data area for each unit of compilation is located
at the lowest available address within module O. A detailed
description of the components of the unit data areas is given

in 5.2.1. The common data area loaded is that which accompanies {
the first unit of compilation being loaded and it is assumed that
all subsequent Caaron data areas accompanying the following units
of compilation are the same (a limited number of checks are
performed by the Loader and are described in 2.6).

The code area for each unit of compilation is loaded from the
highest available object machine module until the remaining space
within the specified module bounds is too small for the current
unit whereupon the next highest module is tried. Remaining

space in the highest module is used for a subsequent unit if
possible. The Loader maintains an available core map which
describes free space in each object machine module and only

when the code area of a unit of compilation will not fit in

any module does it report that core is full. "

loader Generated Information

‘In addition to locating the code and data components of a unitof
compilation within the object machine, the loader. generates

a number of code and data sequences Wthh are necessary
ingredients of the loaded program.

Only two of the loader generated components are specifically

" mentioned in the Object Program Core Map (4.2):-

- Fixed Data Area;
- Program Entry Sequence.

Other code sequences and data areas generated by the loader are
included within the bounds of the unit of compilation code and
data areas for the purposes of producing the Object Program Core
Map.

Feference p.opn-1166

— i\ a

f 3 mi?mi? Pooe wg

. oGS 28 3

Versicn/Bate ¢ /29.4.75

L A1l the loager generated information is described fully k
in 5.4, however a diagram of the Fixed Data Area is

[included here for parity with the Coral Compiler B

{ Users Manual. i

Pl
MOL Absolute address of level 1 entry A

™ -

j ! MOL + 1 1 " 1 2 n i

— 1] H " 3 n

) "

- N 1" 1" 1 Lon i

]

,

re ey

P
Lo

Standard constants for use by the
object program

)]

, ,
sl

[T

Loader Generated Fixed Data Ares

Santmtabondtt

b

! i
SR

©

AV

MARCOMY ggﬂyg‘;ﬁ” AVIOAIES Reference P-OPD-1166

3

¥
l(.-u ;g.v\.ra Wi

Page 29

Version/Date 1 /29 4.75
Author 3 G Slee

B PVTER
gé«‘&.&\;l AN % é‘an

5.2

5.2.1

5.2.2

DATA SPACE ALIOCATION

The data area df a unit of campilation contains CORAL

- data overlayed according to block structure and campiler

generated data (strings, constants, addresses and workspace).
This area may include additional data space generated by

the Loader to. contain library Darameter space, and/or

Loader workspace. .

Data space allocation for each item of CORAL data is
described in U.M. 5.2,

The various sub-divisions of the unit of compilation data
area are aggregated by the Loader and are reported on the
Object Program Core Map as a single contiguous area.

Data Areas

There are3 classes of data areas allocated by the loader:-

'Fixed Data Area
Ccoammon Data Area
Unit of Conpilation Data Area

The contents of the Fixed Data Area and its use is described
in 5.4.1,

Data ihcluded within the Cammon Data Area is wholly defined by the
CORAL: compiler and described in U.M. 5.2.

Unit of Compilation Data Areas include data as described in
U.M. 5.2 and in addition contain space for library procedure
linkage and parameters. The allocation of information for
canmnication with external library procedures in this way is
wholly under the control of the loader.

Allocation Strategy

AS described in 5.1.1, allocation of data areas is confined
to module O of the object machine and proceeds fram the
lowest available address to the highest.

When no contiguous free space exists within module O of
sufficient size to accamicdate a data area then the loader
reports that the core is full and halts.

Allocation of data areas proceeds in the following order:-

~ Fixed Data is allocated when the first unit of
canpilation is loaded and occupies the lowest
available locations in module O,

- Camnon Data is allocated from the top of the Fixed
Data unwards imrediately after allocation of Fixed
Data,

!

L]

. BAP

ﬁﬁﬁf‘ﬁf’a DLHINTTT AVILTUDG Raference p.OpD-1168
EETEY ﬂ!&.l A3 gé—“ 3 ;*%E’ii é\dgb:} P-QPD-1166
Page 30
OO0 DVWTIAMNTH P NAREID A :
Gl bita LA a.mnmlj Li} =4 Version /Date 1/29.4.75

Author 5 G Slee

T

The size of data area for a unit is a function of the loading

It consists of the data area as generated
plus linkage and parameter space for library
procedures referenced by the current unit of compilation which were

order of a progrem unit.
by the CORAL canpiler,

Unit of Campilation data is allccated as a contiguous
area in the lowest available area of module O at the
Since code may be allocated within
module O (5.2.2) unit data may not be contiguous

tiem of allocation.

-3
Pl

with the last data area allocated.

not referenced by previously loaded units (see U.M.

an Inter-module work area if the current unit of compllatlon 1s the

first on thls level,

The follov3n0 diagram illustrates the strategy described above:

AR W

\.

MODULE O
FIXED DATA -}
COMMON_DATA
UNIT | DATA + Proc X Parameters
+ work area
YA AN A A AN A A e
UNIT 1 |
UNIT 2 DATA + Proc Y Parameters :
// /"/’»/
/// / ///
///// VA
A
: ////{
MODULE N

UNIT-2 : Calls library Proc X

5.2.3), plus

Calls Library proc X

and Y

‘

=

@

..r"
73
wd Gk t-,l

s LAY T AVIAMIND o P-OPD-1166
SOELUIOTT AVIGHIGS Reference . |
Page ;
[Y] ?” R A) ay*’mrw‘ 5 E HEY i Og L.
szg CAat ol Lualel Version /Date 1/29.4.75
e Author J G Slee

Notes:

5.3

1 The unused area between UNIT 1 DATA + Proc. X
- Parameters and UNIT 1 CCDE is not sufficiently
large to contain UNIT 2 DATA + Proc Y parameters -
although it may be 1arge enough for UNIT 2 data
on its own.

2 UNIT 2 DATA includes Proc Y Parameters but not
Proc X Parameters since since only one allocation
is required for library procedure linkage and parameters
and this has already been done for procedure X.

CODE SPACE ALIOCATION

The code areas for a unit of compilation contain executable code

for CORAL statements plus switch arrays and jumps for conmon

labels. In addition, the code areas contain loader generated
executable code sequences described in 5.4.

Code generated for each CORAL statement and for switch-arrays

3.1

e,

5.3.1.1-

is described in detail in U.M. 5.3, U.M. 5.4.
Code Areas
Two types of code area exist for each unit of compilation:-

- Code Area
- Switch Area

The bounds of these areas are detailed separately on the Object
Program Core iap (4.2) but are considered by the loader to be
contiguous and hence are always allocated as a contiguous area.
In all sections of the manual other than 5.3.1.1 and 5.3.1.2,
the area described as the Code area or Unit of Compilation
code area is taken to mean the combined code and switch areas.

Code

The unit of compilation code area contains the executable code
generated. for the segments of a unit and is loaded such that the
first segment in the source listing is loaded at the low end of
the code area, and the last segment compiled is loaded at the
high end of the area.

In addltlon to executable code produced from CORAL statenents
this area contains:—

— Jjumps to Common labels
-~ procedure call linkage code,

ALY CEEICYTT AVINAIND Reference P-CPD-1166
Iy % R RIE N g FU iRl flaed
= 3 Pags 32
L CYTIMMIIN [NANRTD orpcion fMnte 1759 4 75
e AN RO RV A W S IC T Version/Date 1/29.4.75
- . Author J G Slee
P
‘! !
. o s
r For each cormon label declared in the source progrzm, the
. compiler adds to the low end of the code area a Jurp sequence
consisting of two instructions. :
i - ' . :
| i Procedure call linkage code, consisting of two instruction
L. . . .
: Jump. sequences, is included at the low end of the code area
- to facilitate communication with external procedures,
|
| . :
Lo The diagram below demonstrates the structure of the code area:
ff
1
- X low core ?
- - . . . ~
| ! , . . kCommun:catlon
L Loader generateci Procedure communication sequences
- .
. 2
‘ 4 & ﬁnt ry
Lo Code , Segment 1 code
generated -
B by e 4 : \ copE NI
L] compiie o k Executable | AREA P
LODLL
code. BOUNGS
| Segment n code
|
| 4 . ’
Switch area } SWITCH
1 A . AREA
- - - Communi -
Lol .
s Loader Fixed Code Sequence cation
. generated -)
| |
i
- high core ‘L : ,
[‘ . .
; .
‘L_/
.
)
|
L
-
bf:;.xl

FeS——]

PR

Pe—

[

$Fn e een ren gt M

BeN Y C1iny NI Reference 1. ~1106
¢ HUU.‘J’J% L.LL%L,IS‘ s g J&' iUiviu Yo | P--OPD 1166
3 . Page 33

£ 1 ;“‘
.f-:w‘.“Ii, s Be?

WD EVTLEAIN K : :
LU B/ i L) ;..L.i LAlsLd Vetsaon/Date 1/29.4_ 75

Y 'nJ“"‘\“"“",Z‘,""‘:""‘.':"’« 2

Author J G Slee

5.3.1.2

5.3.2

Switches

The unit of compilation switch area reported on the
Object Program Core Map consists of the switches
generated for the unit by the OCORAL campiler (U.M. 5.3)
and a Fixed Code sequence generated by the loader.

Fixed Code is not appended to every unit of compilation

but is present in every core module of the object machine
into which code is loaded. For a nulti-level program there
is one copy of the Fixed Code for each program level
represented in a core module.

Fixed Code is appended to the first unit of compilation
(at the current program level) loaded into a core module

and is a constant 16 words in length. Section 5.4 describes
the code sequences.

The diagram in 5.3.1.1 shows the positioning of the Fixed
Code sequence, when present. :

Allocation Strategy

As was described.in 5.1.1, allocation of code areas proceeds
from the highest available object machine address down to the
lowest. An estimate of the size of the Unit of Compilation
code area (code + switches) is generated by the Loader and

a contiguous block of core is allocated at the most suitable
location in the object machine.

In the simplest cases, the code area is allocated at the
highest available address, but 5.3.2.1 and 5.3.2.2 will show
how the Loader and the user may alter this scheme for a more
optimum loading pattern.

Irrespective of how the Loader chooses the core module best
suited to contain the code area for the current unit, the
Loader has to estimate the size of core block needed for

the code. 5.3.1.2 described the algorithm for determining
whether Fixed Code must be appended to the code area. In
addition an estimate is generated for the size of the procedure
comunicaticn area. This area contains two instructions per

procedure referenced by the unit of compilation and not declared
within it.

Once an estimate for the code area size has been made and the code
area allocated then loading can commence. At this point the

area reserved for procedure ccmmunication is relinquished since

it is not expected that all of the area will be used. In fact
only two instructions are required within each core module for

~] f‘\ﬁw:) MARCGHD ELLIOTT £ MW NS Referonce P-OPD-1166
P,./L‘: 3 Hgidu cLLiU I FEAT RS TR LTS
a Page 34
0900 CYTIARCR L AANSD : T
oZUL EALENUTD LUALER Version /Date 1729475 .,
. Author "J G Slee

~ 3

references to plobedlzes external to th° module, although
estimates are gencrated on a unit basi

The diagram below shows how this strategy develops during
loading of 3 units into cne core module

Tow lr
i e S R e e
B Ry b ot Beds
oy UNIT 3 CODE : Estimated size of
b Calls procedures A,B,C,D : UNIT 3 CODE BOUNDS
NIT CODE
Lok o L R S S L s o
BOUNDS - : .
N e :
S v L, ™™ Area for PC’ PD
P))
E
|
|
Actual UNIT 2 CODE | Estimated size of
Ll R Galls procedures A C.0.E ! UNIT 2 CODE BOUNDS
BOUNDS
Declares procedure A !
7 A4
& 4
D
b Ps Pl P 14
Actual k |
UNIT 1 CODE UNIT 1 CODE + FIXED CODE ! Estimated size of
OUN Cal 1 !
BOUNDS alls procedures A,B,C,D b UNIT 1 CODE BOUNDS
7
high J, Core module n

Diagram of allocation of procedure communication areas

Notes 1. Px= 2 instructions used to cammunicate with procedure x.

2. Fixed code is allocated with UNIT 1 as the first unit in
- the module. .

3. . Space for P, is not included in UNIT 2 estimates
as it is declared in UNIT 2. P, is included in
UNIT 3 estimates because the loader does not know where
procedure A is declared when estimating.

4, 1If the available space in module m were not sufficient
for UNIT 3 estimated size the unit would be loaded in a
different module even if there was space sufficient for
the actual UNIT 3 size.)

The actual redundancy in generated code is only PA
(2 instructions).

(&)

G

AR

i) it el

\ A AN ,,‘ et J ”‘ % eference P-OPD-1166
MARCONI ELL .S I AVIGILS
Page 35
QONC CYTINRED | OARED ; ¥
JAUL CA ,,,“z,.h..eJ LOADER Version/Date 1/29.4.75

Author J @ Flese

D.d.2,1

The following two sub-sections (5.3.2.1 and 5.3.2.2) describe
how the actual core module chosen to contain a unit of
campilation differs from the simplified highest to lowest
scheme so far described, whether due to user intervention

or loader optimisation.

Loader Module Allocation Algorithm

The Loader determines the optimum module to contain a unit's
code by examining calls to external- procedures already loaded
in other units of compilation and calls to library procedures
declared in the current unit of compilation.

The basic rules to be applied when predicting the location
of a unit of compilation are as follows:-

1) The Extended Loader attempts to minimise the number
of procedures with inter-module calls, be they Common
procedures or Library procedures. Therefore, if the
current unit of campilation contains references to a
previously declared procedure then the loader gives
a one 'point'" weighting to the core module containing
the declaration; this is repeated for each previously
declared procedure referenced in this unit. If the
~unit contains a declaration of a procedure previously
referenced the Loader gives a one ''point' weighting
to each core module containing a reference to the
procedure; this is repeated for each procedure
declared in this unit and referenced externally.

The Loader has thus set up a Module Preference Table
for this unit which will decide the location of the
unit subject to the further rules:

2) Where a unit of compilatioh has equal weightings of
preference for two or more modules the highest module
is always preferred.

3) The core module must have a contiguous free area
of core large enough to take the whole of the unit's
code as defined in 5.3.1, where the procedure call
linkage area is the maximmum, but not necessarily
actual, size of the area.

4) The area chosen,if there is more than one free block
in the module, will be in the lowest block of large
enough size,

AR

(55 [l | o

RAADCON T

AT T TR
i‘:«h'\!ih’\a‘iu'}

(pom e

o
U8 i
tim ¥ow Bom

COON TVYTIMNrEN 1 nan

' - BYFECNLIAA™
fe1 1 ﬁ AT ETEERERE RN
Il FAY 1S i d S

™

}
(S fea { f=ajlif {ini 3 B s pimred
JALUL CATLIGULL LUAUCH

Roference P-OPD-1166
3. a

Page 36
Version/Deta 1/29.4.75

Author J G Slee

Module
0

5) The code block will be located at the high core

end of the chosen free core area.

The following example demonstrates the use of these rules.
With the layout on the left, the Loader selects a module

for the unit on the right.

Data

Unit with calls to W,Z,B;
declaring C

st choice \\\\

3rd

\ .

5th choice

Unit with calls to A,C
X,Y,D; declaring W,Z,B

nit with calls to W.2Z

Unit declaring A

L7 e 5 T A 087, 57 B

Unit with calls to F

choice

Lth choice

b

1
{
i
1
§

2nd choice

777

Unit with calls to .W;
declaring X.,Y

EZZ unused core area

Applying the above rules, it is clear that the modules have a
preference weighting of 0:0, 1:4, 2:3, 3:0, 4:3.

Module 1 is thus the optimum module, and the unit will be loaded
immediately below the unit. already present, if there is enough

roaom.

If the block was too big to fit into the module 1 free area, and
the area in 4 was large enough the unit would be loaded there,

and so on, as shown in the diagram.

o T T T
DA A BN

r :3"}“‘";" ;\‘b;ﬂ!’\y\l!:v&q\‘i R f"‘r "]CCPJ.PD...]_]—GU
‘L' [\.un\“,jgug ks 3
'S TRTANE v Y e r S e LAt

]
AL B MY s\du‘.x%.ir:j
' Page = o7
\ e e §eme d ¥ jibi dbus At / A A4 TFE
JLUL EATZITUCL LUALLH Version/Date 1/29.4.75
Author J G Slee

User specified
start address

User lModule and Address Allocation

The user can deternine the module into which the current

unit is to be loaded by the use of the ADDress option, see 3.2.2.
The restricting factor is that there must be room in the module
for the ESTIMATED SIZE defined in 5.3.1. If there is room

the Loader will locate the unit's code at the highest available
address in the First Free block aVﬂlluble in the module
requested.

This option, of defining the module into which a unit of
compilation is to be used, may be used to locate units with
references to the same procedures in the same module, while

.still leaving roun in other modules for library procedures

and/or coordination with the normal Loader optimisation, as
described in 5.3.2.1, the optimum core usage can be attained.

The user may determine the exact start address of a unit of
conpilation's code area, by using the AlDress option (see 3.2.2)
and specifying the module, and the offset within the module.

The diagram below demonstrates that the address specified is the
base of the Code area (as printed in the core map) and NOT the
unit code base (lower bound of Unit Code Bounds), since this
may be ambiguous.

foen e v wme eme ese e ewes s of

es.timated

. g . e C
Procedure communication S i

} actual
:

Common label communication

Segment 1 code

: ! CODE AREA
: A ounr

CODE
Segment n code : ; BOUNDS

P

Switch area _ }.SWITCH AREA

Fixed Code sequence

T ETaT o .
AVIGIHUS Reference p-(pp-1166
Page 38

Version/Date q /09 4

o g =
s O

SR .~ Author J G Slee

(2}
o

5.4.1

It should be remembercd that the Fw\éd Code Sequence is only
included on the occasion of loading the first unit on a

- particular level. It is a fixed sixteen words in length.

The CODE and SWITCH areas are of fixed length for each unit
of compilation.

The procedure communication area estimated size is two words for
each procedure referenced, but not declared, in the unit of
caompilation. This figure is used when chechlng that the area
specified by the user is large enocugh. "If it is, the procedure
camunication area is deallocated and two words are alloceted
as necessary, for each procedure referenced for the first time,
but not declared, in the core module selected. The actual size
of the procedure communication area is the sum of these two word
links, and this area is included in the Unit Code Bounds.

NOTE: Each library procedure is treated as a separate unit.
If the user wishes to keep complete control of
library allocation, each library procedure should be
on a different RIB tape. The ADDress option can
only affect the address of the first library
procedure on an RIB tape.

LOADER GENERATED CODE & DATA
In addition to the object code and data produced by the
Campiler, the Loader inserts code and data, where necessar

as detailed below.

Fixed Data Area

The first data area to be allocated in module zero is a Fixed
data area. This is of length 123 words plus 2 words for each
object machine core module. This can be split as shown below,
into 4 level entry point words, 119 constants and 2 words/
module,

The first four \ords contain the obJect program entry points
for hardware levels 1 to 4 respectively. The level 2 to 4
entry points are always set to -1 in the case of single-level
programs.

The next 119 words are fixed constants used by the Campiler to
save sane nultiple constant generation.

The final section in this area consists of module-relativising
constants. Each pair consists of a constant which is used to
convert an address from module relative to absoclute, and one
which can convert absolute to module relative. e.g. for module 2
(instruction format) 2 O and /14 O.

The following diagram sunnarises the above:

Module Relativising
Constants

i\ 5 VAARDOAM ZHEINTTT AYIOAINQ eference p_op
[j'}wl);l!’.;- r é E .a.(«t,-ad dZ ":Ja":u(ém-‘x} !R' ; ; W ngl'\.&i%"&.ﬁ R o } ID~116G
Paga 39
‘mf) 2™ €% ;s-"m‘(::-vn 1) »j;.‘ 1t AR '«l"{)
ULl EAC i Vursm/Lw 1/29.4.75
Author G Slee
o
1
Level 1 Entry Point
Level 2 Entry Point k
L words
Level 3 Entry Point
Level 4 Entry Point
./ i r’
. // Fixed Constants e k 119 words
Vg

2\

/ 24 words

(m modules in object
machine)

R

RPAARCOAL BV AVIINDRLIDG Reference p_opp-11¢
b .2 '..éda-.i’...'ﬁ e o B f =Rt ..gJi..aE t) P-QPD-1166
Page 40
GO CYTORNET [DARED - : ~
JiLUu CATCILUCD LLAULR Version /Date 1/29.4.75

Author 7 & Slea

{21

Procedure Call Sequences

If & procedure is called within the same module in which it is
declared the cenmnication can be made in the following way:
STS LINK
Jd INTRY

where LINK and ENTRY are those printed in the core map, save
that ENTRY is, of course, module relative.

JI the procedure declaration is in a different module to the
reference, the communication can be made using the sequence:

STS PCLINK
Jd PCENT

Where PCLINK is the first word of the 3-word area allccated with
the first data area for this level (see 5.2.2). PCENT is the
entry point of the two-word Inter-irodule communication sequence
(procedure cammnication sequence of 5.3.2.2) for this procedure
in this module, defined as

PCENT IDB PCO
J IMENT

where POO is the first word of the procedure communication
block (U.M. 5.2.3.2), and IMENT is the entry point of the
inter module communication code in this module for the current
level.

The latter is the first 13 words of the 16 word fixed code
sequence (see D 2ad) VAZE

ST Ws2 (save accumulator)
/1D 1 ' (load entry address)
ST Ws1 (store entry address)
COL &360000

(highlight module bits)

NEG PCLINK (load modiule-relative link)

ADD MODBIT (Add current module bits)

/1DB 0 (Ioad B register with address of 1lin
/ST 0 : - (Store return address in link)

ID MODBIT ~ (Load current module bits)

NEG WS1 : (Create ncdule-relative entry addres:
ST BREG (copy to current level Bregister)

ID ws2 (Restore accumulator)

/J 0 (Jump to procedure)

vhere PCLITE, WS1, WS2 make up the three word work area (5.2.2)

:h’*l 'mf 1‘r(nl cem'm ces

v'm v P .'?ﬂ.:.‘... -9?-“,“.‘ wrvde AT +hea 10 o - ! r , ; ;
? S O ! ‘ L amant LS Al'Cad ¢ euca

level in each module are: |

Lo

024

‘ri

7]
)

REATIDONY CLLIOTT Ooterance P-CPND-11656
‘. 1 Pos B lt. ' ol
i'uu \” L -‘!\.u- L.tk A‘:J é i
P’se 41

oNe CYTEAMNLDND | 0ANRED

el sl o4 el N v 1/20.4.75
WWealdad b 0§ bl Wted ks Rakss \.;*L,tt ..xi\,'wx]/b~u [T e

Author J G Slee

.

5.4.4

ADD MRELAD
ST BREG
/30

where MRELAD is taken from the second of the modules
module relativising pair at the end of the Fixed Data
Area, . and BREG is the B register location for the current
level,

This is used for intemmodule jumps to make the address module
relative,

Prorram Entry Sequence

After the END = YES command has been used a program entry
sequence is produced and located in the top free area of
module zero, so that the program may be trigsered from a module
zero address. The sequence for a single level rrogram is

SAB (replaced by SH 0 for 8K machines
IDB ENTAD
/J 0

wbere ENTAD is the level 1 entry point in the Fixed Data area.
For multi-level programs, the code is dependent on the program

‘entry level

E.g. for level 4:

1D - ENTAD

ST 0

1D ENTAD + 1

ST 2

I - ENTAD + 2

ST 4

SAB (replaced by SH 0 for 8X machines)
I1DB ENTAD + 3 :

/J Y

ra\ﬂrtﬁ
l 5 til

0200 i

(.

}F

bmiu

= :tv-w'!nn\ (X

L..A’

;n ‘ t .- s
ke &0 Liﬁ,‘dk 2

i L.‘i\

BRITPELER ey o)
“vi t ‘*x- "3
5».: h.x*i\. wy
S S
"L.QJ

T I W W
:g §§ 700 5 =2t
s

IRV
o eord LA Le § B

Version /Date
Author

Herente p_or-1166

42

V12D ATE T
J G Slee

Appendix A

Table of Uscr Manual S

ections amended or amnlified

by this Do

cument

User Manual Reference

LWWH -

b e e
NN DD

W N b

IS 00 Lo B
2o =

ICECRCECELE CR SR LR
O i D bt et e e e b
HN g GIT LT

)
N

SO OD L0 00 00 60
— o e

AN
=GO
N =

o,
W N .

5.4

Appendlx G

Operational Docurentation Reference

e
00 W L DD
LW =

UM UT b WWN -
[\

NN NDMNDNMNN
N -~

o

. o 0N

ot DN et

D WWww
N

"I

IR Iy
B 00 N

3.1/8.3
Appendix C
Appendix D

(BIANE

ABAEYRCN T8
AARCONE ELL

lr"';
;.A...:’u

\‘!s

LR L LWERNE f..

£ TR !ﬂ-'.rttﬂv&p (
S i LYt
dea &

) 8
OO N JJ; £ Bt

:Tﬂ !P’rp‘
- | l

1% tedi ‘\J

l

i

nce P-0PD-1166
Page 43
Version/Date1/29.4.75
Author J G Slee

(see Appendix C for core
utilisation map)

Appendix B Object Machine Core Uqace Diagram
0
7 REGISTERS
384 MLB= 0,384
s Fixed Data
Area
MODULE ;s?.
0 519 Common Data
520
Unit- 1 Data
537
538 Unit 2 Data
539
P ,J
Lol T
8164 o 5
8166 ENTRY SEQUENCE
: = MUB= 0,816
8167 | ABSOLUTE LOADER
AND
8191 INITIAL INSTRUCTICONS
MLB= 1,0
)J A
l'r/ 'r
15159 ADDTHEM
15166
:g:gg SUBTRACTTHEM
1
UNIT 2 CODE
15187
15188
191 [PROCEOURECALL Linkace
Valaz COMP ILER PRODUCED OBJECT UNIT 1
15223 CODE_= UNIT. 1 _ —
15224 ‘NT ’*anb'E CO U ICAT{UN J
15239 CODF

rd MYs E"’F"“"""“ SLEINTT AVINALINQ Feference ¥ Ao
[i :q_.} {‘) tViFuiuUil BLLIU T | AV IO S ReOPD=1166
(1 ol | Page 44
OONr EVTRAINDN gp\ mre _
Udiu aid ot kUALGIH Verszon/Da'cg, 1/29.4.75
Author J G Slee

B

Appendix C (E) Example of Ioading Information

*AUT = YES
*OOR = 2

CORE AVAILABLE

MODULE BOUNDS

000000 000008 — 008167
000001 008192 ~ 016383
LB = 0,384

*0G

>0l COMMAND UNKNOWN

FAND = 1,7000

*GO

PROGRAM EXAMPLE (I)‘ AL
FIXED DATA AREA
COLMON AREA
DATA ARFA
CODE. ART

SEGMENT DEMON2
SEGMENT DEMON1
COLLION PLACE

UNIT OCDE BCUNDS

000BB4 ~ 000510

000511 7 000519
000520 -— 000537
015192 - 015223

015188

UNDECLARED LIBRARY PROCEDURES

*UHD
UNDECLARED PROCEDURES
LIBRARY SUBTRACTTHEM
LIBRARY ADIJTHELY
*GO
PROGRAM EXAMPLECCDE
DATA AREA
CODE AREA

SEGMENT DEMON3
COMMON PLACE

UNIT CODE BOUNDS

‘000538 ~ 000539
015176.-- .015187"

615174 - 015187

UNDECLARED LIBRARY PROCEDURES

*Qe GO
LIBRARY EXAMPILECORAL

LIBP?CE SUBTRACTTHEM
CCDE- ARA

PROCEDURE SUBIRACTTHEM

UNIT CODE

T TYNMQ
CANDS

015167 ~ 015173

ENTRY 015167
LINK 000528

015167 - 015172

- 015239

Qf B v Van

D ICOM ELLIOTT AVIONICS eference p_OPD-11¢
C\j MARLUNT EL ﬁ@i [AVIUNILO Refsrence pxern-1166 ¢

bm'h-)b“] 3 pao: 46
Y. r..u\d L,r i mi u..du- ¥ .L'E'*L} b §) V&:("(‘H/DQTS 1/&9.4. 75

Author J G Slee

CODE AREA 015159 - 015166

PROCEDURE ADDTHEM ENTRY 015159
LIRK 000534

UNIT OODE BOUNDS 015159 ~ 015166
FEND=YES
PROGRAM ENTRY SEQUENCE 008164 - 008166

AT LEVEL 000001
COCDE CHECKSUM 247476 (OCTAL)

CATP MARCON] ELLIDTT AVIGRIGS Reforence P-con-11cs
ALt . Paga 48
G200 EXTENDED LCABER Version/Date 1/29.4.75
B A Author J G Slee

Appendix D - Minimum Operating Instructions

The following instructions assume that the user is using all fﬁe

default options.

Single level

1) Ioad Ixtended loader under hardware initial instructions

2) Trigger to 8. -

3) Load lst program tape in reader

4) Type GO cr

9) Repeat 3 and 4 for each program tape

6) Repeat 3 and 4 for each library tape

7) Type END = YES cr

8) Tear off tape

9) load program binary tape in object machine under Initial Instructions.

10) Triéger at entry point specified by core map.

1) load Extended Loader under Initial Instructions

2) Trigger to 8.

3) Type IEV=n cr for level n programs (n = 1,2,3,4)

4) ILoad lst program tape on fhis level . in reader

5) Type GO cr

6) Repeat 4 and 5 for each program tape on this level

7) Repeat 4 and 5 for each library tepe on this level

8) Repeat 3-7 for each level

9) Type ENﬁ = YES cr

10) Tear off tape

11) Load each program binary tape in obJ€cL machine under Initial
Instructions (not reading the legible tape number)

12) Trigger at entry point specified by core map.

