Part 1:.

Part 2:

Part 3:

Part 4:

Part 5:

THE 903 ALGOL INTERPRETER

Introduction and Basic Routines.

Lsds
1.2,
1.3
1.4,

2.1
2420

The Organisation Routines.

Introduction

Initial Addresses

Special entry points to the Algol loader
The Pord Evaluation Routine

Sexrvice Routines

. The Algol Arithmetic Narrative.

Arithmetic Primitives

Subroutines used by the Organisation Routines,

4ele
4.2,
4.3,
44,
4.5
4.6,

YYD

4.8,
4090

4.100

4.11,

The Input-Output Routines.

5.1.
5.2

FAILEN
ENFAIL
CONTIN
STSUB
W345R
RICONV
ITRSB1
NEGR1
FINDIP
GARAD
AINDSB

INOUT

The Error Display subroutine,

Assignment subroutine

Character input and output

502910

5.2.2, GECHAR (GECH)

/Contas

5¢3. Output number routine
54, Input number routine
5.5 Other INOUT routines.

A
' 3
x -

/Contd o

THE 903 AIGOL INTERPRETER

Part 1: Introduction and Basic Routines.
l.l. Introduction,

The Algol Interpreter is used to run a 903 Algol program

. ih the form of object code produced by the Translator, This description

<\

should be read in conjunction with the Elliott 903 Algol Object Code Manual
(hmel%6% '

The-Translator reads Algol source text, checks it and converts
it into an object code program which consists of parameter words (pords), data

and workspace. In the basic Algol system for 8K store, this object code is

-punched in relocatable binary form on paper tape.,

The Interpreter reads the program output by the Translator, assembles
it into store, and obeys the object code by interpreting the pords in a ma@gfr
similar to the computer logic obeying machine code instructions, - \\\\\

The Interpreter consists of:-

1) The Algol Loader (based on the SIR relocatable binary loader).

2) The Pord Evaluation routine, which sets up the initial states and
then 'obeys' each pord. 7

3) A set of subroutines.

To interpret an individual pord, the Evaluation routine
selects one of a large number of sub-rountines according to the
code value in the pord, ‘These routines (not necessarily written
in standard subroutine form) together form the great bulk of the

Interpreter. They are subdivided into 3 classes:-

a) The Arithmetic subroutines, which act on integer, real
and boolean values; performing addition, multiplication,

exponentiation; equivalence, etc.

b) The organisation routines, which perform various tasks such
as transferring values to and from the stack, setting up stack

entries for procedure calls, making branches in the pord

e

e 3 - /Contdo.

|
|
|

b) Contd,
program, etc,
s - c) The input—outpuf routines., '
l.2. Initial Addresses.

The store from location 8 to location 123 contains a set of

entry points, starting addresses and working locations, whose absolute |

" addresses are required to be knovm, The position of each item is fixed and
must not be moved, as any such change would make it necessary to change the
majority of all library and users machine code procedures, Certain locations

(j\ in this range have been left spare, any further items requiring fixed locations

may be allocated to these positions or locations immediately above 123, Any
new program or additional instruction in existing routines; must be placed at

a higher position in store,

A brief description of the store from locations 0 to 123 is given
below, For further details the program coding and the individual program
descriptions should be consulted,

Address
0 to 7 These locations are not referred to explicitly at any point
in the Interpreter. They are used only implicitly as the
S5.C.R. and B registers of whatever level the interpreter
(?\ . is obeyed from, normally level 1.
8 Entry to READAL (see 1.3.1.)
9 Entry to CONTIN (see 4.3.)
10 Entry to EXECUT (see 1.4.)
11 Entry to loader (Start C) to input a relocatable binary tape
' related to the previous tape input. (see 1.3.2.)
12 Entry to LIBENT (see 1.3.3.)

13 Entry to READOL (see 1.3.4,)

/Contd.

e e e

Address

14 & 15 (spare in Issue 1)
16 . Entry to CHNGOP, which sets +4 in STODEV and then comes to a
dynamic stope. This causes the lineprinter to be treated as the

presumed output device for future entries to EXECUT.

17 Entry to PUNCH 1, which sets 41 in STODEV and comes to a
dynamic stop. This restores the punch as the presumed outpui\

device. ’ : \\\g

18 to 20 (Spare in Issue 1)

(:f ' 21 to 25 are reserved for special entry points or addresses for

individual users machine code programs.

- 26 Iabelled STKIOD, this location holds either zero or the address
at which the stack is required to start, If zero the stack
will start at the first free location given by the loader after
all programs and data have been loaded. It holds zero in the
first version of Algol. If an extra store module was to be used

to hold the stack it might be set to +8192 for example,

27 Iabelled STKEND, this location holds the address of the block
' following the area reserved for the stack. Its current value is
+8177.
s 28 Iabelled VARNAD, this location holds an address somewhat lower
(:j ; than the beginning of the Algol Ioader. If on entry to a

procedure or creation of an array the stack pointer exceeds this
address VARN is set non zero. (See 1.3.1l. for the effect of

this). Note that the stack can grow a short distance beyond Y
VARNAD without setting WARN due to o;dinary statements, If the
stack is not in the first module WARINAD should be set equal to
STKEND . '

29 ' Iabelled PDADD, this location is used by the loader as the first
address for storing Algol pords. It normally holds the first
free location after the Algol Library functions,

30 STACKA, is filled by the loader with the next free location after
: . . |

1

. -5 4 ' /Contd.
, .) U | al

i
|
I
|

Address
30 (Contd.)

31

32433

34

36

31

29

- 40 to 55
56 to 65
66 to 79

80 to 123

any prozram or data read in,

Is labelled BASE, for access to 32 and 33, and also hold the

address of the first free 1ocation% after the interpreter.

are filled by the loader with the addresses corresponding to

QACODL and QAVNDA, the Object Data Ioad (constants) and the

Hotimil Data Area (variables), respectively. §K/L4k; ¢Q
/ / o

PP (Pord-Pointer) holds the address of the next pord to be

WARN (See 28, WARNAD).

obeyed.

SP (Stack Pointer) holds the address of the "top' of the stack,

the location pointed to and all higher locations are free.,

EP (Entry Pointér) holds the address of the stack entry made on
entry to the current block.

FP (Formal Pointer) holds the address of the result space
(followed by parameters, if any) of the current procedure.

In igsue 2 it will only be set for machine code procedures.

BN holds the current block and is always an exact multiple of
16.

hold addresses of various routines that are required by library

programs, See the program sheets for details,

are special workspace locations required by library prozrams

t0 be in fixed locations.

are further program addresses and vorkspace locations required

by library programs, plus some spare locations.

are workspace locations which are uséd by library programs and
which may also be used by users machine code subroutines. They

way be used freely by machine code procedures so long as these

/Contd,

Address

80 to 123 (Cuntd.)

(“\

B i e

1,5,

do not call interpreter subroutines. If they do call
such subroutines the user should consult the subroutine

specifications and the program sheetsvhere necessary,
Special entry points to the Algol TLoader,
1l.3.1l. READAIL.

This routine is the most commonly used entry to the
loader, It causes the store pointer to be reset to the first
free location after the library, thus preserving the library in
store but overwriting previous Algol object code programs,

The dictionary pointers are set to preserve the Library

dictionary only.

Before enterihg the Loader WARN is tested, If non?;ErQ\\\
a previous Algol program has overwritten the ILoader. In this
éase the message 'RELOAD TAPE 2' is displayed and the prosram
exits to STOP, ‘

1.%.2. Entry at 11 (Input related tape).

This entry goes direct to the loader without testing
WARN and does not reset the store or dictionary pointers. It

must only be used after an entry at 8 or 13,
l.3+3, LIBENT,

_ This routine tests WARN as in 1l.3.1. above, If WARN
ig zero the Toader is entered at a point which causes the entire
dictionary to be deleted and the store pointer reset to the first
free location following the Interpreter. A marker is set (in
location 75) to indicate that the current tape supplies the
Library., This effectively causes the store pointer and
dictionary beginning pointer to be preserved and used for
subsequent{ entries to READAL,

4

- - /Contd.,

le3¢4¢ READOL.

This entry is used to input a program which does not
‘need the Library or has the necessary Library functions on its
ovmn tape. It performs the same operations as LIBENT (1.3.%)
except that the marker to indicate Iibrary input is not set,
Thus the Library and Iibrary dictionary are overvwritten, but no

addresses are stored for future use,.

l.4. The Pord Evaluation Routine.

‘This routine commences at EXECUT vhich sets up various initial
(f\ states. If BASE +2 is still 48191 a correct Algol program cannot have -
been loaded, and the routine exits to STOP.

Otherwise the routine sets up PP, SP etc., and the standard
state for input-output. The standard presumed settings are placed in
the global settings position, taldng as output device number the value in
STOPEV. This value is +1 for Punch 1 unless set by entry 16 to CHNGOP.

The routine then 'obeys' the first pord by jumping to NXPORD,

NXPORD is entered from EXECUT and from the end of every pord
routine in the interpreter. It picks up the word pointed to by PP,
‘stores the least significant 1% bits inADPART. It increases PP by one,
aﬁd decodes the most significant 5 bits of the current pord by jumping to
a 32 vord lookup table FBAJ. This consists of jumps to the basic
Y interpreter function routines, which decode the value in ADPART according

to the individual function characteristics.

In the case of the two functions, PRIM and INOUT the address
part specifies one of a further set of sub-routines. INOUT is described
under the heading of Input-dutput. PRIM is specified further below.

All other function describtions may be found by the reference in Section 3,

PRIN.

The address part of pords with function PRIM specifies one of a

B

[

group of 70 primitive sub-routines, vhose addresses are ligted in a table'PBA

BBTH. Primitives 1 to 29 are entered by a direct jump to the address

-8-

p—.

listed. Primitives 30 to 70 are vritten in standard sub-rouktine form
with the link location at the address listed; Before entry to Primitives
30 to 56 W is set equal to SP-6 and SP is reduced by 3. Before entry to
primitives 57 and above W is set equal to SP-3,

Primitives 1 to 29 are described in the 903 Algol Object Code

" Manual, under their individual names. Primitives 30 to 62 are described

in Section 2 (the Arithmetic routines),

Primitives 63 to 70 are used to place a check number next to a
parameter addresse. They use a common routine which places (N—GO) in
location SP-2, where N is the primitive number,

/Contd.,

3

C -

Y g 903 Algol Ardthmetic Narrative

The Algol arithmetic can be conveniently divided into

a number of sub=routines, which are entered directly from the

’pord~evaluatoro These sub-routines are labelled PRIM for

primitive and each one has a different number associated with
it so that each PRIM sub-routine is unique,; e.g. PRIM59.

Each sub-routine performs one arithmetic operation on either
real numbers or integersy; or in the case of the functions

e¢ffe LNe for logarithmy, on one numbex only,

Before entering any of these PRIM sub-routines, the
pord evaluator uses a location SP, which holds the current
value of the stack pointer, to set a workspace location \/ which
then indicates the position in the stack of the number ox

numbers to be‘operated (03 o

The PRIM sub-routines themselves use a few service
routines for organisational purposes and some double length
arithmetice

Section 1 of this narrative describes these service
voutines briefly and section 2 gives » fairly full account
of the PRIM S/Risg

~=

e 10 e

3\.1-, Grvice Rowlowon

Section 1

The name of the service routine precedes its descriptione

SINGLE$ sets a real number from the stack into w/s locations
W3, Wh, W5, '

FATL: This 1s an error S/R which outputs the error numbex
in the accumulator at the time of entry and if
continuation is effected sets + floating point 00

At ; :
ol msedve W3, W4, W5 dependent on the sign of W3,

RSTACK ¢ Sets 2 real numbers from the stack into w/s
' locations W3, Wk, W5; W6, W7, W8;

RRES 3 Sets the real number in W3, Wk, W5 back into

the stacke

SET': Sets boolean results into the stack. Entry at
SET+1 sets +0 into the stack indicating falsee
Entry at SET+6 sets +1 into the stack indicating

true,
STAND Standardises the real number in W3, Wh, W5,

If the' number is too small for representation or
zero W3, Wi, W5 are all set zero, If the number
is too large then an error is indicated using AMMﬁg

FATL (as above)e wé wl 9
SHIFT1: Halves the double~length mantissae in W3, Wh; (W5, W6
and increments thelr exponents in W5, and W8
respectivelye
DEMULT s ' Multiplies together the double-~length numbers in

W3, Wh; W6, W7 and places the double length

answer in W3, Wi,

]
Sy

i emenatld

TITOR:

CHEBY :

‘DLDIVs

@

Changes the integers in W3, W6 to real numbers
and stores the standardised results in W3, W4, W5;
W6, W7, W8,

Calculates the value of a chebyshev polynomial
whose d/d argument is stored in T, T+1,

The nulsber of constants to be used is set in C, and
the starting location of these d/¢& constants, which

must be sequential and in ordexr, is set in cgtarte

- Forms a sequence?

deeo Br = 2 X arg x Br+1 - Br+2+cr

Divides the d/& number in W3, Wh by that in WS17,
WS18, and sets the d/@ answer in W3, Wh,

©

2.2 rilbtse Prowwd e

The name of the PRIM s/r precedes its description,

SECTION 2

All real numbers must be in standardised form on entry and

are standardised before exite

PRIM30:

PRIM32 s

PRIM3M s

PRIM38:

Adds 2 integexrs which are stored 1n the stack
and replaces the first with their sum, If overw
flow occurs Error 3 is idndicated and a dynamic

stop obeyed,

Subtracts the second integer in the stack fxrom the
first and replaces the first with this difference,
Overflow is treated as in PRIM30 abovey:

Multiplies two integers, held in the stack, and
replaces the first with their producte Overflow
is as for PRIM30 aboves

Raises the first integer in the stack to the power
indicated by the second. The result i1s placed
where the first integer was. If overflow occurs
erroxr 3 is indicated (see PRIM30 abovo)o If the
2nd integer is -ve then error 20 is indicated and
a dynamic stop obeyede The following results
should be noted

0¥ =0 for all X

x° =1 X £ 0

- B -

a

N

PRIMUT U3 U5,47,49,51%

Examiﬁeé the two integers in the stack and,

depending on their values and the particular
primitive, replaces the first primitive with a Boolenn
resultes docee +1 for True, and +0 for Falseo, There

follows a list of the primitive nos., and theilr

functions,
Primli If I1<I2 then True false otherwise
L1 h3 S
"4y -
" 47 #
" Ly > '
L] 51 Z

. PRIM31: Adds two real numbers held in the stack and
' replaces the first with thelr sum, If the answer
is too large for representation then error 9 is
indicated and i1f continuation is éffected then
the answer 1s assumed to be + F¥. Pt, oo

PRIM33: Subtracts the second real number in the stack from
' the first and replaces the first with this differences

Overflow i1s as for Prim31 above, @
L]

PRIM35 ¢ Multiples together two real numbers which are held
' in the stack and replaces the first with their
productes Overflow is as for PRIM31 above,

PRIMQ?f Divides the first real number in the stack by the
’ second and replaces the first with the ansﬁer;
Overflow is as for PRIM31 above. The following
results should be noted
X/0 gives overflow provided X £ O

0/X = 0 for all X

- -
(4

gt s —— s s % 5 e . . = = paer TR - isemn

PRIMU2 (Ml UG5, 48,50,525

Examines the 2 real numbers in the stack, and,
dependent on their values replaces the first with

a boolean result 41 for true, +0 for falses There
follows a list of the prim nos, and thelr functionse.

PRIM42 if R1< R, then true, false otherwise .

2
il <
46 -
48 /
50 >
52 2

PRIM53,5U,55,56,57%

PRIM36:

Examines the 2 boolean numbers in the stack and
depending on their values and the pxrim no. replaces
the first with a boolean result, +1 for true +0 for
false, There follows a list of the prim nose and

their functionse

PRIM53 If B1 AND B2 then true, false othoerwises
sk OR
a5 EQUIV
56 INPLIES
57 NOT BT’

Divides the first integer in the stack by the second
and replaces the first with the real answere The

S/R first convemts the integers to real numbers and

then uses PRIM37 (see back) so that errors and special

cases are as for PRIM37.

R

— IS -

)

PRIM39 ¢

_PRIMUO,

PRIM58:

PRIM59¢

PRIM&2 ¢

PRING ¢

Raises the first integer in the stack to the power
indicated by the second and replaces the first with
real answer., Overflow is as for PRIM31 (see back)w
The following wresults should be noted

0¥ = 0 for all X

x% = 41,0 X 4O

Raises the first real number in the stack to_ the .
power indicated by the second and replaces the-
first with this results, The subroutine uses PRIMG1
(10g) anda EXP (exponential) so that errors which
occur in log and exp will also occur here. The
followlng results should be noteds:

0x = 0 " for all X

0o

X +1.0 X A O

n

Replacex the real number in the stack by its

absolute value,

Replaces the real number in the stack by its entier
(an integer), If the result is too large for
integer representation then error no. 3 is indicated
as in PRIM30 (see back)ga

Replaces the real number in the stack by
+1 4f 41t 1is 4ve,

+0 if it dis zero.

1 4if it 1ds =vee

Replaces the real number in the stack by its
Logarithme If the number is eve or zexo then
error no. 13 is indicated and on continuation the

result ids assumed to be zZeroe

“?”
I

AR I SO |
.

Replaces the real number in the stack by its
exponential value, If the real no. 1§ zero the
answer is glven as +1 immediliately. If the real
number is >+40 then error 12 is indicated and on
continuation the result is assumed to be + Fk, Pt, o
Results that are either too large or too small

for representation are treated as in PRIM31,

Divides the first integer in the stack by tho

second and replaces the first with the integer resulty
rounded towards zero i1f necessary. If the second
integer 1is zero or the result is too large to store

as an integer then error no. 3 is indicated as in
PRIM30, The ws location W is not set by the pord
evaluator in this routine so that on entry the

routine uses SP (stack poinﬁer) to set W before
obeying thb4 divisione

-7 -

Part 3: The Organisation Routines,

These routines are adequately déscribed in the 903 Algol
Object Code Manual under their individual names. For further details
the flow diagrams and program listing should be studied. Sub-routines
used by the Organisation routines are described in Part. 4. INOUT and

the input-output routines are described in Part.5.

/Contd.,

& Yl

S

;l

e e i i it ot

Part 4: Subroutines used by the Organisation routines

4,1, FAIIEN.

Thig subroutine prints information when a run time error is found

by any interpreter routine.

Entry: Place link in PAUSRT,/phmp to FAILEN with an error number)
in the accumulator as a positive interger,
. Bxit: Exit is standard with W and W3 holding the same value as on
entry. '

Process: The routine displays the readings:-
s

ERROR BN PP RETURN/followed on a new line by the given

- |
error number, the current block name and pord pointer, and

the address in the second word of the sfack entry for the current
block., -Bach-is—printed—as-en—integer-prefixed-by ¥ The

error display is preceded by output of 16 blanks on the punch.

After output the routine comes to a program wait. Since the
link is in PAUSRT re-eniry at 9 causes exit from the subroutine
(see CONTIN 4,%.)." If the error is one from wiich recovery is -

not possible the subroutine entry should be followed by a stope

wl
Workspace: The global and local Qg;nt sellings are left{ unchanged by this .~

routiney; W3 is reset to its initial. value. Vi1, V2 and V4 to
¥10, SBW to SBi5; WS and ADPART are all left undefined.

4,2, ENFAIL.

Entry is by direct ‘ump to ENFAIL with an error number in j
the accumulator. A standard entry is made to FAILEN followed by a stop.
This entry is used for non recoverable errors. Another entry is ERROR'whioh
is used for compiler errorsy e.g. incompatible data. SPARE is entered from
all spare positions in the primitive and pord function tables(representing

another compiler erroao

/Contd °

=10 =

IS |

4.3, CONTIN,

Thic is entered from the pro;;ram entry address 9, Its entry
parameter is the line in PAUSRT, which is always set before the interpreter

enters a program Vait, A jump is made to one plus the address in PAUSRT,

Before exit PAUSRT as set to cause STOP on re-entry, so that if
the computer should stop for reason other than a program Vait (e.g. output -

device in Manual) re-entry at 9 will have no effact., Note that the ““\.

~

program can always be restarted by entry at 10, - \\\\

"4.4, STSUBRT (Assign).

This subroutine assigns a given real or integer value to a

given address, wit?(?acking if the value is real, Urlz;wxi;//

Entry: Store the link in STSUBRT.
Enter at:-

1) STSUBRT +1 with the address at (sP) -6 and the value
at (SP) -3.

2) STSUBRT +7 with the address at (PKDADD) and the value at

the address held in the accumulator.

3) STSUBRT +15 with the address at (PKDADD) and the value
in Vi3, VW4, and V5,

Exit: Exit is standard if entry (1) is used.
SP: = SP-3 and W: = SP-6

Process: If the given address is that of a constant (bit 17=1) a non-
recoverable error indication is given., If the address is that
of a real value (bit 18=1) the given value in 3 locations is

packed ihto 2 locations, with rounding to the nearest 2—27.

P

If the exponent is less than -64 zero is as signed, if greater than

+63 the error forfloating p01nt overflow is given and # 0.,99999999*

263 g assigned. Y e Lo (’rw lilitstneg Ay dglbress

i ,‘,27 e Mg ekt o ,‘.4417‘.‘.c¢f tetlheen f /L/J-'.Q'f—-y/
4.5, W34SR.

This subroutine copies a real value (in unpacked form) from a given

- 20 - . : _ /Contd.

!
5
i
!

|
!

i

position into locations W3, W4 and V5.
g Entry: Store link in SBINK and use entry:-

1) V345R copies the topmost value in the stack.
2) \(345R1 copies the value whose sddress is held in the
4 accumulators,

%) W34R2 as for (2) with address in B register.
. Bxite Standard. '
Workspace: W3, W4, 5. Also W if entry (1) or (2) used.
(f\ 4.6, RICONV.

The subroutine converts the real number in W3, W4,W5 to integer

. forn, The process used gives the Algol automatic type conversion (integer: =

enter (real + 0.5)). :j//
Entry: Store line in SBINK1 and enter at RICONV. ,

Error: If the number is greater than 131071.5 or less than =131071.5 the
error for integer overflow is given. Continuation is not

possible,
Exit: Standard, with the integer in the Accumulator and V3.
Ylorkspace: W3, V4, V5, SBW.

4.7. ITRSBL. ' » , ’

o

_ This subroutine converts an integer ito a real value, The real)
value is in standardised floating point form, unpacked in locations W3, %4 and
Y5

Entrys Store link in SBINK, enter at:

_ 1) ITRSBl with the integer in the Accumulator. .
' 2) ITRSB2 with the integer in V3.

Exit: = Standard.
Workspace: W3, W4, W5, SBW.
/Contd.

o O =

4.8, NEGR1.
This subroutine negates a given real value i@ standard unpacked
floating point form,
Entrj: Store link in SBINK; enter at:-

1) NEGRL with the sddress of the real value in W.
2) ° NEGR6 with the address in the B register.

. Exite Standard, with the negated number in the original position.
Workspace: Entry (1) W. Entry (2) none,
4,9, FINDFP.

This subroutine finds the formal pointer corresponding to a given
block number. ‘
Entry: Standard subroutine entry, place link in FINDFP and enter at
PINDFP +1. ADPART contains the given block number BNi and
n (the procedure parameter number) in the least significant

4 bits,

Exit: Exit is standard, with 3n + FPl in the Accumulator,

where FPZ ig the formal pointer corresponding to BNR.

i\
Errors: If the given block name is not found a compiler error " is

printed (recovery not possible).
Viorkspace: SUBWKL, SBWL.

4.3, GARAD.

This subroutine gets the address of an array map, given the address

of the array.

Entry: Store link in SBINK and enter atGARAD with the address in the

Accumulator,
Exit: Standard, with the array address in W and the map address in
Wl l

Workspace: W, Wl.

/Contd.

- 22 -

e R S

SO Y.

4,11, AINDSB.

This subroutine finds the absolute address of an array element,

given the indices in the stack. "It is used by INDA and INDR pord functions,

Entry: Standard, place link in AINDSB and enter at AINDSB +1. ADPART
holdsn, the number of dimensions, and the indices are held in
stack at the positions SP -3n, SP =3n + 3566000y SP=3.

The array address is at SP-3n-3.

Exit: Stendard, with the element address in the Accumulator., If a

real array, bit 20 has value l.

Error: If the array element falls outside the limits of the array a A

non-recoverable error is given. (Array index wrong) .

/Contd.
o B

Part 5: The Input-Output Routines,

5.1. INOUT,

This routine is used to call a further set of subroutines,
depending on the Qalue in the address part of the pord. It determines
whether the Inout nuwnber is greater than 15 to inform the setting procedures
that a local or global setting is required. The address of the particular
Inout routine required is obtained from a table at INOUT 3 All the routines
are entered as subroutines with a common link at- TOINK. However, only numbers

1 to 4 make use of JOINK on exit, all the others exit direct to NXPORD.

5.2, Character input and output.

All input and output via paper tape station is done through the

- subroutines GECHAR or OTCHA, (This includes output to the teleprinter and

line printer vhere fitted.). The only exceptions to this rule are the
output of blanks to the punch in FINISH and FAITEN and the input of tape by
the Algol Loaders

56201, OTCHA .

This subroutine outputs one character to the current
output device. It is identical in the 920 version to
the standard 90% version,

Entrys Store link in OTCHA and enter at OTCHA 1
(OTCHA +1), with the character to be output
held in the Accumulator and the required

output device number held in ODEV,
The character to be output is either:-

(a) A six-bit 903% Internal code character,
(b) A binary pattern to be output, vith the
sign bit set.to one,
Entry to OTCHA2 causes a repetition of

the previously output character.

/Contdo

- 24 -

i i i i il
a

— g

o ey e e a2

5-2.20

Exdt:
Workspace:

IMethod:

GECHAR.

Exit is standard, with ODEV unaltered.

SBW.

If the sign bit is not present, the output

code value of the character is found from TABIE.,
If a double character is indicated, the
character in VBARCH is output before the

translated character. (This is redundant

"in the 90% version). The output is done by

using ODEVTB [ODEV] to modify a/15 O

instruction.

If the character is internal code newline,

the character from TABLE is followed by output
of the character from LFCH and a blank. (In
the 9207503 version LFCH is blank also).

A tést is included for output device numbers
éreater than 4. At present this merely causes
a .jump to exit from the subroutine. At a
later date this may be used to enter a digital
plotter output routine and/or other special

output device routiness.

This subroutine effectively gets one character from

the current input device. Different versions are provided/
for the 903 and (920/50% code) Interpreters. Entry and

exlit are identical for both versions,

Entry:

or

Exit:

IDEV must contain the required input device

number,
Enfer at GECH wifh the link stored in SBLUWK.
Enter at GECHEN with the link stored in GECHAR.

Exit is standard. The character just read from
tape and translated to internal code is held

= 05 = ' /Contd

7

!
|
|

|
|

in BUFFER {}DEQ].

The previous character (in internal code) is
held in NEXTCH. -The group code for this
character is held in the Accumulator on Exit.
(For a description of groupcode see the
Translator description, page oY, (For the

920 Interpreter substitute "character just

taken from the input buffer'! for "character just

read from tape"),
Method s (1) 903 Interpreter.

A cuaracter is taken from BUFFER (IDEV)
and stored in NEXTCH. If this character was
marked with the sign bit it represented a halt
code and a wait stop is entered. (The initial
routine'EXECUT ensures that 'space' is the

first character taken at the start of a program).

"The program then reads one character from
the current input device. A/15 0 instruction
is modified by IDEVTB [IDEV]. Seven bits of
this character are used to look up TABLE values.
The parity bit is compared with that from the
table. The least significant 6 bits of the

2 table look up give the internal code value,
. except for special characterss, Special
characters are grouped into: illegal characteré:

ignorable charactersy; newline and halt.

The appropriate internal code is stored in
BUmER {IDEV]. The groupcode PABLE {IEKTCH] is

taken before exit from the subroutine,
Method s (2) 920 Interpreter.

A character is taken from BUFFER (IDEV) and
stored in NEXTCH. “BUFIAG is then tested. If

/Contd.
& B

S T T D T

negative the line input buffer is empty,
(EXECUT sets BUFLAG negative at the start of

each program).

If the line buffer is not empty the next
character is picked up and stored in BUIFER
KiDEi]. The groupcode for NEXTCH is found by
looking up TABIE and the routine exits. It
the character picked up from the line buffer was
newline then BUFﬁAG is set negative and HALTIK
tested. If HALTMK is true the newline
character represents a halt code input and S:WAIT

(Systems Qait) is entered.

If the line buffer is empty charactérs are
read from paper tape, converted to internal
code, and packed 3 to a word until the next
newline is read. Vertical bar is treated as a

" gpecial character, the following significant
character is read and the appropriate internal
code formed, Halt code is treated in the same
way as newline, with- a special setting of
HALTHK to true., If an illegal character is
found the buffer if filled up to newline before

an error is givene,

When the line buffer is full the routine
returns to pick up the first character from the

buffer and exit in the normal way.

50%0 Output number routine,

Function:

Entry:

To print a real number or integer on a specified

output devicey, using a specified 903 Algol. format.
In all cases the link is stored in IOLNK.
1) Enter at OUTR to print the real number at (W)

using the current local print settings. A holds th

/Contd .,

- 27 = ' S
|
|
|

Exit:

C

Method :

3)

4)

5)

new value of SP.

Enter at OUTI toprint the integer at (W) using
the current local print settings., A holds the

new value of SP,

Enter at OUTR2 with the required print mode given
in the Accumulator to print the real number in (V).

The output device number must be set in ODEV and

“the required digit settings in DIGM and DIGN where

appropriate:

Output mode Accumulator DIGM DIGHN
Freepoint (n) + 0 (not used) +n
Aligned (m,n) -1 +m n
Scaled (n) + 1 (not used) +n

Enter at OUTI4 to print the integer held in the
accumulator. ODEV must hold the output device
number required. The current digits number is
taken from INTDG.

Enter at OUTI5 to print the integer held in W3.
ODEV must be set as for (4) and the accumulator
must hold +n for a print in the style: digits (n).

~Exit is to INUEX, vhich causes a standard subroutine

exit via the link in IOILNK,

Integers are converted by the standardise routine and

&
printed as real numbers in the form aligned (n,0). -
The real number is converted from the forms

N =a*¥% 2b * 10° vihere —1.0< a £ -0.5
or +0.5 a (+1.0

tos .
N =F % 2% % 10° % SIGN

where +1.0> T2 +0.1

X is an integer

SIGN is 41 or =1

/Contd.

- 28 -

R e Ll 2t

The modulus of N is first taken, then X is found
by repeated multiplication or division by +10,0,
until P is in the required range when b is reduced to

Z2eX0.

If the number cannot be printed in the specified
. format an alarm print takes place according to the

rules in the 903 Algol lManual. Otherwisce the number
is printed by OTIXD as a.mixed number. If in scaled
format the number is printed as I ¥ 101 and followved
by subscript 10 and (X-1) printed as an integer with
sign aﬁd non~-significant Zzeros,

Vorking

locations: ¥, ODEV, are not altered by the routine,
V3, V4, W5, DIGL, DIGN, SBLNK, SBW, SBWl, SBVZ2,
ADPART, SBLNK2, V/52 to VIS8, VSl4, NSIGNF, SIGNCH,
TENPVR, SW, W1, W2, W7, W8, W9, VS10, WSll, WSl2,

are altered in an undefined manner.
5¢4o Input number routine,

Function: To input a.number punched in one of the standard

Algol forms from the current input device.

Entrys Store link in IOINK and enter 'at RDNM. To read
real number ADPART must be set +2, otherwise an
integer is assumed. W points to the address to

which the number is assigned,
A
Exite The number is assigned to the given address. SP is

set equal to W, The number may be found in W3, W4 and
w5 (W3 for integer). Exit is via INVEX which causes a /

standard return‘}z/the link in TOLWK. y 8
(7227}

Method ¢ The routine always reads a real number, converting to
integer form before .exit if required. Each digit
input is multiplied-—-by=+¥0- and added to a double length

Avaled

ma.ntissa; wtield k1 MW ‘iy | 0 eg()wc A6 odlelliam ,

/Contd,

- 20 o

O

A count is kept of the number of digits after the
decimal point and this is combined with the decimal

exponent (read as an integer). The floating poinG._

nunber formed from the digit input routine is then \\\\

multiplied or divided by 10.0 the appropriate number

of times.,

Before exit the number is negated if a negative sign

wes read, and converted to integer form if required.

550 Other INOUT routines.

These routines take their parameters from the top of the run-time

stacke For read and ppint settings one routine is used for both global and

‘local settings, the difference having been detected by INOUT. These routines

detect whether the settings are out of range, and vhere necessary replace them
by the stendard settings., Thus the read and point routines do not have to allow

for out-of-range settings.

For further details the 903 Algol Object code Manual, the flow
diagrams and program sheets should be studied.

- 50 -

