
Volume 2:

Part 1:

Section 1:

Chapter 1;

Chapter 2:

PROGRAMMING INFORMATION

PROGRAMMING LANGUAGES

MASIR

Contents

INTRODUCTION

1,1 Purpose

1.2 Features of MASIR

1.3 Configuration

MASIR LANGUAGE AND COMPATIBILITY

WITH SIR

MASIR Relationship to SIR Facilities
Definition of MACRO
MASIR Language - Text Processing Facilities

MASIR Language - Code Generation Facilities

Structure of a MASIR Program System N
N
N

W
N

W
R

W
H

Fe

2.5.1 MASIR Program Unit

2,5.2 Blocks

2.5.3 Identifiers and Labels

2.5.4 Global Identifier Lists

2.5.5 Local Identifiers

2,5.6 Example of Block Structure

2.6 Words

2.7 Instructions

2.7.1 Absolute Addresses

2.7.2 Relative Addresses

2.7.3 Identified Addresses

2.7.4 Literal Addresses

2.8 Quasi-Instructions

SDRN/MASIR/3

Page

n
m
e

oe

W
w

e
r
r
r
n
a
r
n
n

pb

&
W
W

&

Chapter 3:

Chapter 4:

Chapter 5:

ii

Page

2.9 Constants 13

2.9.1 Integers and Fractions 13

2.9.2 Octal Groups 13

2.9.3 Alphanumeric Groups 14

2.9,4 Pseudo-Instructions 14

2.10 Skips 17

2,101 Labelled Skips 17

2.10, 2 Repeated Data 18

2.11 Comments 18

2.11.1 Titles l8a

2.12 Patches 18a

2.12.1 Absolute Patches 18a

2.12.2 Module Patches 18b

MACRO FACILITIES

3.1 General Description 19

3.2 Definition of MACROS 19

3.2.1 CALLG(X) 20

3.2.2 MQCHOP 20

3.2.3 QFPCALL 21

3.3 MACRO Calls 21

3.4 Numeric Label Generation by *$ 22

3.5 Addition to MACRO Text 23

ASSEMBLY FACILITIES

4.1 Conditional Assembly of Text 25

4.2 The Use of FUNCTION MNEMONICS 26

4, 3 Additional Addressing Facilities in MASIR 27

4, 4 MASIR Subroutines, QPARAM 30

SUMMARY OF MASIR DIRECTIVES

5.1 *DEFINE 33

5,2 *DELETL 33

5.3 *GDEFIN 33

5.4 *ADDMAG 33

5,5 *IF 34

5.6 *IF NOT 34

5, 7 *LISTLA 34

5.7.1 * NOLIST 34

5.8 «x CHECKW 34

5.9 *PROG 35

5,10 * NOMEM 35

5.10.1 * MEM 35

5,11 * CHANGE 35

5.12 *SETDIC 36

5.13 *NOTITLE 37
5.13.1 * TITLE 37

SDRN/MASIR A

Page

Chapter 6: MASIR OPERATING INSTRUCTIONS

6.1 Form of Distribution 39

6.2 Assembler Operating Instructions 39

6, 3 List of Assembler Options 40

6.4 Loader Operating Instructions 41

6.4, 1 Function 41

6, 4.2 Distribution 41

6, 4.3 Operating Procedure 41

6,5 Entry to Program 42

6. 6 List of Loader Options 42

6.7 Loader Setting for Various Store Sizes 43

Chapter 7: STORE USED

7.1 MASIR Store Used 47

7.2 Store Used by Loader 47

7.3 Store Used by Loader Programs 47

Chapter 8: ERROR INDICATIONS

8.1 MASIR Error Reports 49

8,2 Loader Error Reports ‘62

8.3 905 MASIR Example Program 54

Appendix A: SYMBOLIC INPUT ROUTINE (SIR) App. Al - 52 incl.

Appendix B: DIFFERENCES BETWEEN MASIR AND SIR FACILITIES

App. Bl

Appendix C: MAPLOD (LABEL LISTING PROGRAM) App. Cl - 2

SDRN/MASIR/5
iid

iv SDRN/MASIR/ 1

905 MACRO ASSEMBLER (MASIR)

Chapter 1: INTRODUCTION

1,1 Purpose

The Macro Assembler Program for the SIR

Language (MASIR) provides the power associated with a machine code

language whilst retaining many of the programming advantages normally

associated with a higher level language. The assembler, which allows

a large number of user-defined MACROS in addition to conditionals and

source lines, generates relocatable binary code which may ‘be loaded into

any store module by a linking loader,

The SIR Assembler (a subset of MASIR) is

described in AppendixA to this section of the manual.

1,2 Features of MASIR

The Programming features of MASIR include:

(a) USER DEFINITION OF MACROS with

replaceable parameters and nested definitions

(if necessary).

(b) CONDITIONALLY COMPILED CODE and

MACROS which allow dummy peripheral

routines or diagnostic information to be

assembled, or ignored, without the editing

of a source program,

(c) MACRO CALLS WITH PARAMETERS enable |

a large number of machine code instructions

to be generated by a single macro instruction,

(d) MNEMONIC NAMES for MACHINE CODE |

FUNCTIONS as alternatives to numeric

function codes used by the SIR Assembler

(Appendix A).

{e) FLEXIBLE LOADING OF PROGRAM UNITS

into any store modules and communication

between these units. Communication is made

possible by global labels and special

Assembler/ Loader macro features.

{f} ABILITY TO COMBINE FORTRAN and

ASSEMBLY CODE enables programs to be

linked during loading by the linking loader.

SDRN/MASIR/3

(g) COMPATIBILITY WITH EXISTING 900 SERIES

SIR PROGRAMS. The existing facilities of SIR

are included in MASIR with the exception of

those items that are only usable in load-and-go

mode, and options which are replaced. by

directives (See Chapter 5).

1.3 Configuration

The assembler will run on any current 900 Series

machine, i,e. 903, 905, 920B, 920C, 920M. The basic version requires

8K store (8192 words), paper tape reader, paper tape punch and

teleprinter.

SDRN/MASIR/ 3

Chapter 2: MASIR LANGUAGE AND COMPATIBILITY WITH SIR

2.1 MASIR Relationship with SIR

MASIR is an Assembler program containing macro

facilities for the 900 Series 18-bit computers.

MASIR has,compared with SIR many additional

facilities (see Chapters 3,4, 5).

The SIR assembly language is described in Appendix

A and the differences between MASIR and SIR facilities are listed in

Appendix B to this manual.

2.2 Definition of MACRO

A MACRO is a string of characters (which are made

up of any sequence of allowable characters including English text, machine

instructions, data items, macro definitions and calls, etc.) associated with

a given name (MACRO NAME) which is inserted in the text of a program

wherever that particular name is used in a macro call, This string may

be modified by replacing parts of it by actual parameter strings specified in

the call.

Examples:

(1)
*DEFINE READCH (X)

4 +0
15 2048

5 x]

(2)
“DEFINE DATA (X)
[X, 193, X19-2]

(3)
*DEFINE MAC2 (D)

* DEFINE READCH (2)

5 D

Zz,

S
s
t

o
e

SDR N/ MASIR /3

2.3 MASIR Language, Text Processing Facilities

MASIR has two processes, viz:

(i) text processing facility

(ii) one-to-one assembling.

The MASIR language consists of a string of characters

forming 'text! which may contain some, all or none of the following: -

MACRO definition (Chapter 3. 2)

MACRO calls (Chapter 3. 3)

Facilities associated with MACROS (Chapters 3.4 and
3, 5)

Conditionals (Chapter 4.1)

The MASIR assembler passes this 'text' through a

MACRO generation stage, which produces on output a string of characters

‘text! but which exclude all the text processing facilities. Under normal

assembly conditions this 'text' is not actually output to an external

receiver, but in fact is passed direct to the code generator stage of the

assembler program, By using a suitable option (see Chapter 6) this inter-

mediate text may be output, a check can then be made to see whether the

processing of macro text is as expected.

The macro generator facility may be used

independently as a text processor, to produce any suitable text output;

for example, macro generator of repetitive data, macro generation of

Fortran programs etc.

2.4 MASIR Language - Code Generation Facility

The 'text' produced using the text processing facility,is

passed to the code generator which should form a valid MASIR program or

programs. Inthis 'text'there is normally a one-to-one relationship

between elements of text and words of code generated. The code generator

converts this 'text' into RLB program words, which is then loaded into store

as a fixed program with fixed operand addresses.

2,5 Structure of MASIR Program System

The remainder of this chapter describes MASIR text

and the associated rules used after processing the MACRO generation (text

processing) facility. For example, if it is stated that only identifiers,

separators and '' symbol can be included ina global label list, it then

follows that the original may contain MACRO calls and definitions within

the global list.

4 SDRN/MASIR/3

2.5.1 MASIR Program Unit

A MASIR program system consists of one

or more program units (the name "program unit" is frequently abbrev-

iated, to"program*’). A program unit may be headed by the directive

“PROG, which is followed by a name (allocated to the first location of the

program unit), and must be terminated by a newline % newline.

Each program unit is assembled independ-

ently of other units, and the code generated from this unit must be loaded

into one store module. Therefore code generated plus local workspace

must not exceed 8192 words.

A program unit should be made up from the

following elements after text processing:

Directives

Global label lists

Blocks

Labels

Words

Skips

Comments

Patches

Percent Line (equivalent to the
sequence newline,

percent, newline)

In general MASIR words bear a one-to-one

relationship with the core store words occupied by the program when it is

loaded (see Appendix A Chapter 1. 3).

2,5.2 Blocks

A MASIR program unit consists of one or

more blocks. Each block begins with a global label list, and is terminated

by either the start of a new global label list, or a percent line. Between

the global label list and the terminator a block may be made up of the

following elements:

Directives

Patches

Skips

Comments

Labels

Words

The division of a program unit into blocks

is under the control of the programmer. Block structure may be used:-

(a) To limit the scope of label

declarations, so that identifiers may

be inserted freely without fear of

inconsistency,

SDRN/MASIR /3
5

(b) To divide a program into convenient

sections so that later it can be easily

interpreted by others.

(c) To clarify which parts of the program

communicate with other program

units.

2,5,3 Identifiers and Labels

An identifier is a name invented by the

programmer. It may be the name of a macro, a program unit, a data

item, an array or program instruction.

Identifiers can be devised using any

combination of the alphabetic characters and the digital characters 0-9,

but the first character of any identifier must be an alphabetic character.

Identifiers are distinguished from each other by their first six characters

only. (See Appendix A Chapter 2. 1). Identifiers may be declared ina

MASIR program unit in one of five ways:

(i) Use ina *DEFINE, *GDEFIN,

*ADDMAC, for macro names (See

Chapter 3 and 5).

(ii) Use ina *PROG directive. This

effectively declares the name as a

global label labelling the first location

of the unit, see Chapter 5,9.

(iii) Use in a global label list.

(iv) Use as labels to instructions or data

items (constants, quasi-instructions

or skips).

(v) Use as labels in the form LABEL =

absolute address.

Note that SIR and MASIR do not make any

distinction between identifiers (labelling instructions) and those used as

data identifiers. They are declared in the same way, by labelling a word.

An identifier used as a label is written on

its own,preceded and followed by space or newline separators. It then

becomes associated with the address, into which the word following that

label would be assembled.

A label in the form Label = absolute

address indicates,that label is associated with that address, Any absolute

addressing be used and it may be written as m or m fn where m=< 8192 and

6 SDRN/MASIR/ 1

nis a module number (n<16)

e.g. LABEL 2 = 20071

This means that LABEL 2 labels the location 8392 (200 + 8192) and does

not imply setting a value into LABEL 2 location. For examples and

further details see Appendix A Chapter 2.1.

2.5.4 Global Identifier Lists

The start of a block is signified by a Global

Identifier List enclosed in brackets []. This list may only contain

identifiers, separators or double quotation marks. Global Identifiers and

their uses are described below.

Global Identifiers form the link between

the program units, Sub global identifiers form the links between different

blocks of a program unit. They must be listed in the Global Identifiers

Lists at the head of:

{a) the block in which they are declared

(b) every other block in which they are

to be valid. Each global or sub-

global must occur as a label once in

the total area in which it is valid.

One or more separators must follow each

identifier in a Global Identifier List; only identifiers, separators and

Sub-Global Identifier markers ("') may occur between the brackets which

enclose the list. When an identifier is included in the Global Identifier

Lists of two or more blocks which are assembled together, that identifier

refers to a single address (indicated by a label in one of the blocks -

namely, the block in which it is declared). An identifier used 'globally'

in some blocks may be used ‘locally! in any block in which it is not listed

as global.

The name of a program unit is auto-

matically global to other units. It can also be declared as global in its

own unit and can then be referenced from within the unit.

Sub-Global Identifiers are signified by the

use of the double quotes " symbol. If on its first occurrence in a Global

Identifier List an identifier is preceded by the '' symbol, it is treated as

sub-global, Whereas, a Global Identifier is passed on to the relocatable

binary loader (thus permitting communication between several program

units, held jointly in store), Sub-Global Identifiers are removed from

the MASIR dictionary when % is encountered. The listing of an identifier

as Global or Sub-Global is determined by the first Global Identifier List

in which it occurs and is valid for a complete program. An identifier

cannot be Global in some blocks of a program and Sub-Global in other

blocks of that program. Once an identifier is Sub-Global, the use of ",

before further references in global lists is optional.

SDRN/MASIR/3
7

Examples of Global and Sub-Global Identifiers.

MOUSE"HAMSTER"LION WOLF

MOUSE AND WOLF are Global-Identifiers

HAMSTER AND LION are Sub-Global Identifiers.

2.5.5 Local Identifiers

Identifiers which are neither Global or Sub-

Global are termed Local and have no meaning outside the block in which

they are declared.

A name (or identifier) may be used to

represent a Global or Sub-Global Identifier in some blocks, several

different Local Identifiers in other blocks, and be undefined elsewhere in

a program.

Each Local Identifier is declared by being

used once and only once as a label in the block for which it is valid.

Similarly each Global or Sub-Globai Identifier is declared by being used

once only as a label in only one of the blocks for which it is to be valid.

2.5.6 Example of Block Structure

*PROG PREDICT
[PREDICT SPEED DIST "B2]

+0

ST WwW

MUL SPEED

SH 17

5ST DIST

J Ba

WwW +0

[B2 PREDICT]
B2. ST DIST

LDB PREDICT
5/ 1

DIST >1
%
*PROG CALC
[CALG PREDICT "B2 SPEED DIST]

CALLG (PREDICT)

8 B2

SPEED +0

DIST +0
["B2 |

B2 8 :+0

%

; 3

SDRN/MASIR/3

The example is not realistic.

PREDICT is Global to program CALC

DIST is Global in block PREDICT

Another DIST is local in block B2 of PREDICT

B2 is Sub-Global in program PREDICT

Another B2 is Sub-Global in program CALC

2.6 Words

Words are the basic elements of a MASIR program.

They can be written in several forms: constants, instructions, or special

address forms (see Chapter 4.3).

For example:

+ 304 and

- . 2667

are constants, whereas:

15 2048 and

/2 CAT+10

are instructions.

+ LOCN

is an address form.

Each word must be followed by a separator

character, On assembly a SIR word will occupy one store location

within the core store. Words are entered into consecutive store

locations in the order that they appear in a program unless the Assembler

receives a directive (e.g. patch, skip, etc.) to the contrary, |

2.7 Instructions

Words written in the form of instructions are

introduced by a /(solidus) character or a digit. Each word consists ofa

function part and an address part, which are separated by one or more

separator characters (e.g. space).

If thesolidus precedes the function part this

indicates that the address part is to be modified by the contents of the

B register. The function part consists of a decimal integer in the range

0 to 15; each integer represents a 900 machine function (e.g. 4 represents

the function load the accumulator). Alternatively the function part may be

a mnemonic, see Chapter 4.2. The address part can be written as

Absolute, Relative, Literal, or Identified (defined in 2.7,1 to 2,7. 4), An

address is assembled as an integer in the range 0 to 8191.

SDRN/MASIR/3

If a function mnemonic is used, the solidus represent-

ing modification may be placed before or after the mnemonic.

2.7.1 Absolute Addresses

An absolute address consists of an unsigned

integer not greater than (8191),9 and refers to the core store location with

that integer as its address. In machine code functions 14 and 15, the

absolute address provides further specification of the function using

standard conventions.

Examples of absolute addresses are?

4 8180 Meaning, load the accumulator with the

contents of location 8180.

15 6144 Meaning, punch the least significant 8 bits

of the accumulator.

2.7.2 Relative Addresses

A relative address can be one of two types,

a ‘location! relative address or a 'block' relative address. Integers used

in relative addresses must be in the range 0 to (8191), 9.

A location relative address consists ofa

semicolon,followed by a signed integer,and refers to a location the

address of which is:

The address in which the current instruct-

ion is being assembled + the signed integer value.

Examples of location relative addresses are:

7 3t3 Meaning, jump three locations forward

if zero.

5 ;-l Meaning, store in the previous location

8 ;+0 Meaning,perform a dynamic stop.

NOTE: 8 ;0 is an invalid instruction as the integer

following the semicolon is unsigned.

A block relative address consists of an un-

signed integer not greater than 8191 followed by a semicolon and refers to

a location with an address equal to:

The value of the unsigned integer + the

address of the first location in the current block.

SDRN/MASIR/1

Examples of the use of block relative

addresses follow.

[ONE Two | Two global addresses

START #1) Constant

+2) sran's

40; Load the accumulator with the contents of location

(0 +START) = +1

5 ONE Store contents of accumulator in ONE

41; Load the accumulator with the contents of location

(1 + START) = +2

5 TWO Store contents of accumulator in TWO

2.7.3 Identified Addresses

An identified address consists of either, an

identifier, or an identifier followed by a signed integer. An identified

address is introduced by a letter.

The assembler will replace the identified

address with the sum of the absolute address of the location (labelled in a

unique manner by the identifier) and the signed integer (called an

increment - even if negative in value), The increment must be in the

range +4095 to -4096, and the address formed by identifier + or - in-

crement must lie in the same store module as the Identifier.

An identified address can be used in the

TEXT prior to the declaration of the identifier to which it refers

(i.e. prior to the identifier appearing as a label).

2.7.4 Literal Addresses

Literal addresses are introduced by any

one of the following symbols:

+,-,=,&, or &.,

They are used to make it easier to write

instructions which operate on constants. Their function is indicated in

the examples which follows:-

Example 1

TEN +10

4 TEN

In this instance the identifier which labels

a constant to be used at some other point in the program is placed in the

address part of the instruction. Whereas:

SDRN/MASIR/1 1

Example 2

4 +10

in this example the programmer simply places the constant itself into the

address part of the instruction, - During assembly, the assembler on

reading the end of program symbol % allocates a store location to the con-

stant, places the constant therein,and finally, inserts the address of this

location in all the instructions using this constant,

There are four types of literals correspond-

ing to the four types of constants available to MASIR. These literals are;

Integers and fractions

Octal groups

Alphanumeric groups

All of which have the same format as their

corresponding constants for example,

4 -,2667 Fraction 6 &7777 Octal

2 +360 Integer 4 £E5 tT Alphanumeric

and finally the literal type:

Quasi-instructions (detailed in the next section 2. 8)

Module address, relative and module

address absolute may also be used in literals (see Chapter 4. 3).

2.8 Quasi-instructions

These literals are similar to their corresponding

pseudo-instruction constants (Section 2. 5. 4) but differ from them in the

following manner:

(1) Every quasi-instruction is introduced by

the symbol = which immediately precedes

the function bits or solidus (indicating B

register modification when present).

(2) The address part of a quasi-instruction

must be in absolute form (relative,

identified or literal addresses are signified

as errors by the error message ERROR
IN LITERAL).

Examples of Quasi-instruction literals are;

4=80 Load accumulator with the constant

216 = 65536

6 =15 8191 Collate the accumulator with 131071

(binary 1 less than 217)

1a SDRN/MASIR/3

2.9 Constants

Five types of constants are available to MASIR,

They are:

Integers and Fractions

Octal Groups

Alphanumeric Groups

Pseudo-instructions

All constants must be followed by a separator |

character,

2.9.1 Integers and Fractions

These are introduced by a + or ~ sign.

If the + or - sign is immediately followed by an integer then the constant

is stored as a binary integer. Viz.

+14 is stored as 000 000 000 000 001 110

- 64 is stored as 111 111 111 111 000 000

Integers must be in the range - 131071 to

+131071 inclusive. The integer + 131072 may be written as the pseudo -

instruction /0 0 or as the octal group & 400000.

Ifa + or - sign is immediately followed by

a decimal point (-) then one or more digits, the constant is stored as a

binary fraction, For example:

+-375 is stored as 001 100 000 000 000 000

and -.5 is stored as 110 000 000 000 000 000

The fraction - 1 can be written in the same manner as the integer -131072..

Fractions can contain up to six digits.

2.9.2 Octal Groups

These groups are introduced by the

symbol &, An 18-bit 903 word can be divided into 6, 3-bit groups each

group being equivalent to a digit from 0 to 7, Thus a constant can be

written as an & symbol followed by a group of 6 octal digits. For example:

&312705 can be written to represent the binary pattern:

011 001 010 111 000 101
oy So ff ——) oo vod oH

3 1 2 7 0 5

13
SDRN/MASIR/3

Octal groups of less than 6 digits can be

written and in this event the digits are right~-justified, i.e.

&42 = &000042

2.9.3 Alphanumeric Groups

These groups are introduced by a £ symbol

which immediately precedes three alphanumeric characters. These

characters are packed (from left to right) into a store location in 6-bit

SIR internal code. This internal code is as follows:

900 6-bit Internal Code

External 6-bit Code External 6-bit Code

Character (Octal) Character (Octal)

Space 00 0 20

Newline 01 1 al

" 02 2 22

tor é& 03 3 23

$ 04 4 24

% 05 5 25

& 06 6 26

’ acute 07 7 27

(10 8 30

) 11 9 31

* 12 : 32

+ 13 ; 33

’ 14 < 34

- 15 = 35

‘ 16 > 36

/ 17 10 or ? 37

\ grave 40 Pp 60

Aa 4] Qq 61
Bb 42 Rr 62

Ge 43 Ss 63

Dd 44 Tt 64

Ee 45 Uu 65

Ff 46 Vv 66

Gg 47 Ww 67

14 SDRN/MASIB/ 4

eat,

internal 6-bit Code External 6-bit Code

Character (Octal) Character (Octal)

Hh 50 Xx 70

li 51 Yy ral

Jj 52 ZZ 72

Kk 53 [73

Ll 54 £ or\, 74

Mm 55 J 75

Nn 56 t 76

Oo 57 < 77

NOTES: lL. On input no distinction is made between upper and lower

case letters. Letters are always output in upper casé

(i.e. caps).

2. Newline is a compound symbol consisting of the CR and

LF characters. The MASIR Input Routine ignores carriage

return (CR) but recognizes line feed (LF) as significant.

3, Tab is equivalent to space.

4, The alternatives shown will be used on [I.5.0. code

teleprinters.

In packing alphanumeric groups all

characters in the table given can be stored with the exception of the

following: -

(a)

(b)

(c)

SDRN/MASIR/}

% cannot be included (end of program

symbol. See 2.9. 2).

t ande—are stored as the octal

number O01 (i.e. code for newline) and

not in their own codes (Octal 76 and

77).

An alphanumeric group is considered

complete if a newline is encountered

before three characters have been

read after the £ symbol; in this

event the group is left-justified

(i.e. the rernmaining characters are
considered to have the code 0, the

code for a space character).

15

Newline is NOT considered as a

character within the group but acts as

any other normal separator. Spaces

which occur in the three characters

following the £ symbol are treated as

normal characters.

The prime function of alphanumeric groups

is for storing characters which are to be punched out during a program

run, It must be noted that this operation can only be performed when the

program using this function contains a print routine and a table for con-

version from internal to external code.

Examples of Alphanumeric Groups

Group Required Form in Store

Octal Alphanumeric Equivalent

& MAN 55 41 56 MAN

sf He 01 50 Ol Newline H newline

£ space = newline 00 35 00 Space = Space

NOTE: The spaces in octal equivalents are for clarity purposes

only, They must NOT be punched.

Since alphanumeric groups containing f and

<— cause newline code to be stored, ifa representation of * and <— is

necessary an octal group must be used. Viz.

Group Required : Octal Equivalent

(as written)

& 76 77 76
TeT
Ah & 41 05 77

2.9.4 Pseudo-instructions

These are identical in format to ordinary

instructions, but are used as constants, for example, /0 0 can be used

to represent the integer -131072.

Similarly, it is possible to obey constants

as instructions though the intentional use of this effect is NOT

recommended. A failure to terminate an instruction sequence with an

unconditional jump (for example, a dynamic stop) is liable to result in

this undesirable effect.

Le SDRN/MASIR/1

2.10 Skips

A skip signified thus >, indicates that during

assembly a specified number of store locations are to remain unaltered

before the MASIR Assembly continues filling the store with words. The

number of store locations to remain unaltered is specified by an optional

+ sign and an integer. The specification characters immediately follow

the => symbol.

Consider the following example of a skip:

+ 133 Word

>415 Skip

4 8180 Word

5 COUNT Word

Further coding

If in this example the word + 133 was entered into

location 5000 of the Core Store, the Skip (> + 15) indicates that the next
word (the instruction 4 8180) is to be assembled in location 5016 and

not 5001. 5 COUNT would then be assembled in location 5017 etc.

The prime function of skips is in reserving locations

for work space without assigning any values to those locations.

2.10.1 Labelled Skips

Locations left unchanged by skips may be

labelied in the same manner as locations occupied by words. For

example:

8 ERROR

> +4

ALPHA —+10

MATRIX >400

BETA >10

In this example, if 8 ERROR is assembled

in location 4000, ALPHA refers to location 4005, MATRIX to 4015 and

BETA to 4415,

NOTES: (a) The last word of the 10-word vector labelled ALPHA is
addressed as ALPHA?t9. Similar addressing applies to

MATRIX and BETA.

(b} Addresses outside the range indicated in (a) can be referred
to by incremented instructions. Thus ALPHA +11,

MATRIX+1 and BETA-399 are alternative ways of

SDRN/MASIR/ 1 17

yb) contd, referring to the second location of the array MATRIX, If

the length of ALPHA was changed, the increment relative

to ALPHA would have to be changed, Similarly, if the

length of MATRIX was changed the increment relative to

BETA would also have to be changed.

2.10, 2 Repeated Data

This facility can be used to seta particular

constant or instruction into a number of consecutive store locations. It is

written as follows:

>nidata

where data is any valid MASIR element. It is assembled as though n items

of source code has been given with the character string defined by data.

E, g.
> 10:+0

> 6:<1
>11:&014367

>5:0 LABEL

>12:10 ERR

> 8:0 ;40

The form:

>m: NAME data

is equivalent to:

NAME > m: data

For example:

>4: ARRAY] +1

would be assembled as:

ARRAY1 +1

+1

+1

+1

2.11 Comments

These are included in a program to make the printout

of that program easier to understand.

18 SDRN/MASIR /3

Any string of characters (valid in the internal code)

enclosed in parenthesis () is ignored by the MASIR code generator.

2.11.1 Titles

These may be included in a program to

indicate the progress of assembly, or to identify a particular version or

revision of a program on the assembly listing. They are optionally displayed

on the teletype at assembly time, Titles should be enclosed by double round

brackets.

E. g. ((TAPE 2 VERSION 6 18-10-71))

Any characters valid in the internal code may

occur between the double brackets.

Title listing can be suppressed by the

directive?

*NOTITLE

and allowed again by the directive?

*TITLE

Titles have no other effect on the assembly of

the program,

2.12 Patches

A patch is a special form of directive which directs the

Loader (via the assembler) to store a program unit in a particular part of

store, instead of storing the contents in the next free position.

Two types of patches are available:

1. Absolute patches

Ze Module patches

2.12.1 Absolute Patches

These specify the actual location at which the

next word of a program unit is to be stored.

2.12,1.1 Absolute address patches

These are written in the form:

t address

or

t label

SDRN/MASIR/3 18a

or

label + increment

Any label used must be already located in this

unit.

A label may only be used if not code has yet

been laid down, or if address patching is already in use.

Address patches can be used as often as desired,

throughout a program unit, provided that no module boundaries are crossed.

2.12.1.2 Absolute global patches

These are written in the form:

} global label

or

* cptobal label + increment.

This can only be used if no code has

yet been laid down and the label is not located in this unit. An error message

will be given if the label is subsequently located in this unit.

The label must have had an absolute

address allocated to it before the patched unit is loaded.

For all absolute patches, the loader

does not update its free store pointers, so the user must exercise some

control over the layout.

2.12.2 Module Patches

These specify the module into which a program

vnit is to be loaded, without fixing its address within that module.

They are written in the form:

tt module number

or

44 global label

If a global label is used, it must have had an

absolute address allocated to it before the patched unit is loaded. The program

will then be stored in the module which contains the global label.

18b
SDR N/MASIR /3

The program unit will be stored downwards

from the next free location in the module specified. If there is not enough

room, the loader gives an error, Loader free store pointers are updated,

SDRN/MASIR/3 i8e:

Chapter 3: MACRO FACILITIES

3.1 General Description

The Macro Assembler contains facilities for writing

single statements which can generate several machine code instructions;

for example, one statement can generate a two word subroutine call, ora

collection of Macro definitions can be grouped so as to resemble a high

level language, orientated to a particular application. When using the

latter method, the need to revert to machine code notation is eliminated.

3,2 Definition of Macros

Macros are defined by the directive *DEFINE in

the form:

«DEFINE (8) MAGRONAME (Formal parameter list) [TEXT] |

= Space (which may be replaced by a sequence

of space or newline characters, Any characters between

MACGRONAME and Formal parameter list and/or text will

be ignored, this includes * $.)

A MACRONAME represents a name chosen by the

user, in the form of an identifier.

The 'formal parameter list' consists of identifiers

separated by commas, However if there are no parameters to be listed

then the parenthesis {) must be omitted.

TEXT may consist of any string of characters

allowable in SIR internal code (see Appendix A Chapter 2.5.3).

The text must always be enclosed within a square

bracket pair i.e. between [and]. TEXT may be null (i.e. no characters)

between brackets viz [].

Further square brackets may form part of the text

providing that each [is matched by a corresponding] (see examples in

this section).

When the Macro is called, any parameter in the text

will be replaced by characters specified in the actual parameter list. On

definition, the text is simply stored, no action is taken on definitions,

conditionals, etc., contained within the text.

The following examples make use of the *DEFINE

directive:

*DEFINE CALL(X)[
il x
8 X41]

*xDEFINE MST(A,B)[
A
5 B]

SDRN/MASIR/5 19

*DEFINE PRINTA[
CALL (QOUT1)

/0 0]
* DEFINE MJUMP(A)[
[MAIN QOUT}]
A

0 +MAIN

/8 0]

A Macro may also be defined as having its text on a peri-

pheral. Whena call of such a macro is encountered a demand is sent to the

appropriate input peripheral and the text may be read in, enclosed between

[and] as before. This way different texts may be read in for successive

calls of the same Macro. All the usual macro facilities are available in

this situation, including nested macros whose texts may be in store, on

another peripheral, or on the same peripheral. The directive format is as

follows:

DEFINE (8) MACRONAME (FORMAT PARAMETER LIST)
[PERIPH)]

This macro when called will read text from the paper

tape reader.

*DEFINE (s) MACRONAME (FORMAL PARAMETER LIST)
[PERIPH3]

This macro when called will read text from the

teleprinter. All other values of PERIPH are illegal, Separators are

optional unless shown.

A MACRONAME may be redefined by using a new

*DEFINE directive, however this action must not take place within the call

of that MACRO. On execution of this directive the original MACRO text and

parameters will be deleted from store. A parameter may, not be redefined

within a call of the macro containing it. Red

The three MACROS which follow are pre-defined by

MASIR; if redefined, this action will not constitute an error,

3.2.1 CALLG (X) Call Global Subroutine

CALLG generates a call of a subroutine which

may be in another module. The single parameter replacing X must be

declared as a global identifier, the name of a subroutine (See Chapter 8).

Note that the A-register is not preserved on

entry to the subroutine. Three instructions are inserted in the object code

for each call of CALLG.

3.2.2 MQCHOP

Generates call of QCHOP (Outputs one

character to the specified output device; the character is held in internal

20 SDRN/ MASIR/5

code in the A-register). (Each call of MQCHOP generates two instructions.)

3.2.3 QFPCALL

Generates call of QFP - the Floating Point

Interpreter in the 900 FORTRAN library (Each call generates two

instructions).

3.3 MACRO Calis

Once a Macro has been defined in the text, it can be

called at any point by writing its name (MACRONAME).

If a Macro has parameters in its definition, then when

called the MACRONAME must be followed by an ‘Actual Parameter List’

enclosed in parentheses. The actual parameters can be arbitrary characters

{excluding commas).

The actual parameters specified may themselves

constitute a macro call. In this case the formal parameter will be replaced

by the text of the macro called.

The Macro call is replaced by the generated text of the

Macro definition, with the actual parameter string replacing the formal

parameters and * $ being replaced by an incremented numeric value (See

Section 3.4).

Example:

Using the examples defined in Section 3.2.

TEXT INPUT PROCESSED TEXT

4 VAL 4 VAL
MST(2+31, VAL) 2 + 3]

5 VAL

PRINTA 11 QOoUTI
8 QOUTI+

/0 0

CALL(SUB) ll SUB
8 SUBHt1

MJU MP (PRINTA) [MAIN QOUTI]
11 QouTI

8 QOUT1+
/0 0

0 +MAIN
/8 0

SDRN/MASIR/5 21

3.4 Numeric Label Generation by * $

Each time a Macro is called, and the pair of characters

7 $ is contained in the text, the pair is replaced by a set of digits giving an

incremental value. The value is set to 1 initially and is incremented by 1

for each call that follows (this facility is useful for generating labels).

The resulting combination of characters formed in this

way may be the name of another macro.

Example:

*DEFINE GZ(A, LP)[

4 A

9 LL*$
7 LL*$

8 LP

LL*$

]
*DEFINE LL3 [SWLIST]

The following calls will generate the text shown:

Calls Text Generated

Dl

Lu

LLI

DIP

GZ(D1, DIP)
GZ(S1Z, LAB)
GZ(&77,SWLIST+2)

OS

-
~
1
.
0

Lil

S1Z

LL2

LL2

LAB CO
~
.
0
 of

LL2

&77

SW LIST

SW LIST

SW LIST+2 OO

1
.
0
 OB

SW LIST

The * S facility may also be used to vary label increments

or even vary literals though this is of doubtful value. e.g.

*DEFINE MACTST[

4 WSt*§
1 n*§
6 & 77S
5 NU MB*$

8 i$]

22 SDRN/MASIR/5

Would give on a first call
4 wSl

J «]

6 & 771

5 NU MBl

8 :41

Care should be taken in using this type of construction

that the rules governing legal numbers are not infringed, The line 6 77% $

on the 8th call of the macro will be output as &778 which is an illegal octal

number.

The *$ may be combined with a parameter.

*DEFINE SUBX (A, B)[
ll Axg$

8 Axpoxg

B * 6]

If called as SUBX (PARAM, /0) gives ona first call,

11 PARAMI

8 PARAMI +1

/0 1

In all cases a macro may not be called more than 1023

times without being re-defined. In the case of a name followed by *$, if the

total number of characters formed after processing exceeds 6 an error will

be given.

The construction LAB*$EL is not legal as the assembler

will recognise it as two labels pointing to the same location i.e. LABI and

EL on a first call.

3.5 Addition to MACRO Text (using * ADDMAC directive)

An existing MACRO may be modified by the use of an

*ADDMAC directive , in the form:

ADDMAC (8) MAGRONAME [TEXT]

TEXT has the same form as in Section 3.2. The TEXT:

is added to the end of the existing Macro text.

Example,

*ADDMAG MST[
9 ERR]

Using the example given in 3.2., the cali of

MST (2 (s) +31,VAL) would now generate,

SDRN/MASIR/5 23

2 +31 The revised macro definition in=

5 VAL cludes the additional instruction

9 ERR '9 ERR'.

It is not possible to define new parameters without

completely redefining the MACRONAME, but where there is a direct

correspondence between any name in the new text and the formal para~

meters in the original definitions, the parameter will be replaced in

subsequent parameter calls.

If an attempt is made to add text to a macro whose text

has been defined as being on a peripheral, an error will be given.

xADDMAC directives may form part of a macro text e.g.

*DEFINE EXTEND|[

0 $$

/4 LABEL

LABEL

*xADDMAC EXTEND[
+0 1]

In this case the macro adds to its own text each time it

is called, but it can add to others just as easily.

The example shown gives ona first call.

0 +1

/4 LABEL

LABEL

+0

and on a second call

0 +2

/4 LABEL

LABEL

+0

+0

When a MACRO name has not been previously defined

by a *DEFINE directive but a reference is made to this name by a directive

*xADDMAC, it will have the same effect as the *DEFINE directive. (Using

the *«ADDMAC form, the MACRO cannot have a parameter list.)

24 SDRN/MASIR/5

Chapter 4: ASSEMBLY FACILITIES

4.1

text conditionally.

facilities during testing.

SDRN/MASIR/3

Conditional Assembly of Text

The directive *IF and *IFNOT are used to assemble

These directives are useful for inserting extra

(a) The *IF Directive

The format for this directive is:

ur(s)NAMEONE-NAMETWO (TEx T|

After macro processing NAMEONE and

NAMETWO should each be reduced to a single j

identifier, if not, an error will occur. If

they are reduced to the same identifier the

text will be assembled, otherwise text will be

ignored (TEXT may contain any string of

characters, with matching square brackets).

Example;

“IF COND=TEST [CALL(PRINT)|

If at the beginning of a program * DEFINE

COND [TEST] were defined, then the directive
previously stated would cause:

1] PRINT

8 PRINT+I1

to be assembled.

The “IF NOT Directive

The format for this directive is:

*ITFNOT NAMEONE=NAMETWO [TEXT]

This directive is processed as the *IF

directive except that the text is assembled if

the condition NAMEONE=NAMETWO is not

true; otherwise the text is ignored.

Combination of *IF and *IFNOT Directives

The conditional directives *IF and *IFNOT

may be combined by the use of & . A full

conditional instruction takes the form:

CONDITION [TEXT]

where CONDITION takes any one of the forms:

23 2 25

ur(*) NAMEONE=NAMETWO

or

steNoT(s)NAMEONE-NAMETWO

or

CONDITION & CONDITION

Example.

“IF COND=TESTI &*IFNOT STATE=ONLINE
[*DEFINE MONP [15 6144]

This means that if COND equals TEST! and

STATE does not equal ONLINE, the text will

be assembled and so processing of *DEFINE

MONP would continue; otherwise the text is

ignored.

4,2 The Use of Function Mnemonics

The mnemonics given in the table which follows are

used as alternatives to the numeric function codes used in SIR and

must not be redefined.

MNEMONIC MACHINE FUNCTION

CODE

LDB 9) Load B Register

ADD j Add to A Register

NEG 2 Negate accumulator and add

contents of location

STQ 3 Store Q(Auxiliary) Register

LD 4 Load A Register

ST 5 Store A Register

COL 6 Collate (Logical AND)

JZ 7 Jump if Zero

J 8 Jump

JN 9 Jump if negative

INC 10 Increment (Count)

sTS 11 Store S Register (Sequence Control)

MUL 12 Multiply

DIV 13 Divide

DA Wo :
_ SDRN/MASIR/3

~ MACHINE |
MNEMONIC CODE FUNCTION

SH 14 Shift

SHL 14 Shift Left

SHR 14 Shift Right

IPO 15 Input/Output

TER 15 7168 ‘Terminate current program level

ATB 15 7174 Ato B Register

| BTA 15 7175 A 1 B to A Register These

ATQ 15 7172 A to Q Register : .
instructions

QTA 15 7173 Q to A Register .
are available

| SKS 15 7169 Skip if standardized on 905 and

SKB 15 7170 Skip if B i i ip i Register is 920C only

zero after count

RWG 15 7171 Read word generator

SRL 15 7176 Set relative addressing

SAB 15 7177 Set absolute addressing
_ _- ae |

See the Technical Manual of the appropriate computer

for the exact effects and side effects of each instruction.

Whenever mnemonics have been used as labels in an

existing SIR program, then mnemonic detection may be suppressed by

*NOntEM (See Chapter 5.10).

If the directive *NOMEM has been used, mnemonic

detection may be allowed again by using the directive * MEM.

4.3 Additional Addressing Facilities in MASIR

MASIR provides alternative methods for assembling

suitable addresses for programs requiring to communicate between

different store modules.

(a) Module Relative Address

Written in the form:-

+ (declared global identifier)

The identifier can be followed by an increment.

There must not be a separator between the

identifier and the + or the identifier and the

increment,

This addressing facility places the module

relative address of the declared globai

identifier in the Current Placing Position

(C.P.P.).

SDR N/ MASIR/3
2 M2

tb

The Module Relative Address facility enables

a program (A) in one module to communicate

with data (D) or program (B) in another module

without knowing the module destination of A,

B or D.

In this context a module of store is an area of

8192 words of core store, starting at an

address which is a multiple of 8192.

Example:

If XL is a declared global data or program

label in program B, which is associated with

address 200¢ 1 (i.e, 200+8192*1=8392) when

unit B is loaded, then:

+XL

+X L+20

are module relative address forms in

program A.

If program A is loaded into the module thus:

In module In Module In Module

Module Address 0 1 2

+XL generates

values +8392 +200 -7992

+X L+20 generates

values +8412 +220 ~7972

Users of the program 903 SIRL16 may note

that the form:

{15 XL

has the same effect as +XL and may be used

in MASIR to allow for compatibility with

programs written in 903 SIR Language.

Absolute Address

The form used to store an absolute address in

the C. P,P. is: —

: followed by an identifier (can be followed

by an increment).

There must not be any separators between the

identifier and the colon or between the

identifier and the increment.

SDRN/MASIR/1

SDRN/MASIR/3

Example. (using the example in 3.8.1)

XL would cause +8392 to be stored

‘XL+20 would cause +8412 to be stored

‘XL-2 would cause +8390 to be stored

independent of the module in which program A

was stored.

Module Address Relative and Module

Address Absolute

The forms:

+ identifier/ (module address relative)

and : identifier/ (module address absolute)

can be used to store the address of the first

location of the module in which the identifier

is to be loaded. (There must be no separator

between the identifier and +, colon, or /.) |

Example.

Using the example of global label XL in

program B at 200 4 1 with program A in the

modules indicated thus:

Mcdule - 7
Andress Module 0 Module 1 Module 2

+XL/

; +8192 +0 -8192
will cause

storage of

and :XL/

+8192 +8192 +8192
will cause

storage of

(d) Literal Address Forms

All the forms described in (a) to (c) can be

written as literals (i.e. analogous to literal

constants, see Appendix A Chapter 2. 3. 4).

They may take any of the forms:

function + identifier

function : identifier

function + identifier/

function : identifier/

In each of these forms a data location is

reserved to hold the address form and an

instruction is constructed to refer to that

data location. (The data location may be

F144

shared between several such references),

Example.

If XL is a global label loader at 200% 1 in

program B then in program A:

MODULE 0} MODULE 1| MODULE 2

OFXL oo salient to 0 +8392) 5 +200 0 -7992

{8 0 a et ig ie) 18 0 {8 0

or 0 +X4L/ | o +8192] 0 +0 0 -8192

/8 XL /8 200 /8 200 /8 200

equivalent to

Either of these pairs of instructions will cause

a jump to label XL in program B, independent

of the modules occupied by program A or B.

4 XL will cause the value

or +8392 to be loaded

LD :XL into the A Register

4,4 MASIR Subroutines

Local subroutines may be written in MASIR in any way

convenient to the user. Subroutines which are to be, or might in future be

called from outside the program unit in which they are located, should

normally be written in the standard form {Since subroutines will normally

be called by the CALLG Macro).

The MASIR assembler generates the call CALLG

which takes the form of a sequence of code identical to a Fortran

subroutine call. See the 900 Fortran Manuai for details of this, and of

the parameter mechanism necessary if MASIR programs are to call

Fortran SUBROUTINES or FUNCTIONS, or vice versa.

Within each store module (block of 8192 words) into

which program is loaded, the loader places a set of instructions known

as module code. These provide a means of transferring between sub-

routines in different modules. When the Fortran compiler generates a

call of a SUBROUTINE or FUNCTION, it generates a special macro

which is processed by the loader. The Macro Assembler MASIR

generates the same macro when the source code macro CALLG is used,

CALLG is written in the form:-

CALLG(SUB)

where SUB represents the name of the subroutine to be entered, which

must be declared as a global label.

% Se SDRN/MASIR/1

The loader macro mentioned above always generates

three words of code. If the subroutine in question is loaded into the same

module as the calling routine, the loader generates a direct subroutine

call, equivalent to the assembly code sequence:-

4 +0

ll SUB

8: SUBtI

lf the subroutine is loaded into a different store

module, the loader generates, for each call, 3 words equivalent to the

assembly code sequence: -

4 +SUB

ll QMc (Call SUB via Module Code)

8 QMCHtI1

where +SUB represents the address of a location holding the address of

SUB relative to the calling module.

The module code QMC has the form:-

Word

0; QMC +0

1; to 10; (Reserved for Fortran, etc. use)

11; 5 W (Store Relative Address)

12; OW

13; 6 &760600

14; 2 QMC

15; /5 0 (Store adjusted link)

16; 6 &760000

17; /8 1 (Jump to subroutine entry)

This code is automatically duplicated in each module

in which program code is stored.

The called subroutine may be written in Assembly

code or Fortran. If SUB is written in Assembly code it should have the

usual form:-

SUB +0 (Link)
(Entry point following link)

(Body of Subroutine)

0 SUB (Exit)
/8 1

If the call of the subroutine is from Fortran, the

above example is equivalent to a SUBROUTINE with no explicit formal

parameters,

“5 Si

SDRN/MASIR/3

Note that the CALLG and module code mechanism can

only be used on the priority level(normally a Base Level (Level 4)).

However Subroutine calls on other levels must be handled differently, for

example,by a set of macros similar to CALLG, or by avoiding cross

module references.

The following macro is used to generate a list of

FORTRAN compatible parameter pointers:

QPARAM (parameters)

The MASIR sequence:

CALLG(SUB)
QPARAM(parameters)

is equivalent to the FORTRAN statement:

CALL SUB (parameters)

where parameters may be any number of literals, labels or any valid

MASIR address field elements, separated by commas. These are laid

down ina similar manner to that used by the FORTRAN compiler; each

parameter is assembled as /O nor 0 +LABEL. The second form is used

only for global labels not yet located in this unit. See the 905 FORTRAN

manual for further details of the method of parameter passing.

NOTE: QPARAM is @ special reserved macro which must not be

redefined by the user.

32 SDRN/MASIR/3

Chapter 5: SUMMARY OF MASIR DIRECTIVES

5.1 * DEFINE

The directive *DEFINE stores text specified, with

identifier macro name, in the MACRO dictionary.

The format is:

* DEFINE () MAC1 (A,B) [TEXT]]

MAC] is the MACRO name, if nil text input [], if no
parameters omit (A, B).

Separators are optional except where marked (*)

5.2 *DELETL

This deletes all MACROS from store previously

defined by *DEFINE, but not those specified by *GDEFIN. (The macros

CALLG, MQCHOP, QFPCALL and QPARAM are not deleted). }

The format is:

*DELETL (s)

5.3 *GDEFIN

This directive is used as *DEFINE except the entries

are not deleted by the *DELETL directive.

The format is:

*«GDEFIN (s) MAC2 (C,D) [TEXT 2|

MAG2 Macro Name

c,D C and D are parameters

[TEXT 2] Text input

(If no Text input, then write[] }.

If no parameters included omit ()

Separators are optional except where marked (s)

5.4 * ADDMAC

This adds additional text to the end of a macro

definition; if no macro defined, this directive will act as a *DEFINE

directive.

The format is:

* ADDMAC (*) MAC1 [TEXTla]

SDRN/MASIR/3 Hi 33

5.5 “IF

This directive takes the form:

sv (8) A=B[TEXTC]

This is a conditional test for the equality of two

identifiers; if identifiers are identical, it will assembler text specified.

A and B may be any combination of identifiers or any

The comparison will take place after
combination of macro names.

If after processing, either A
macro - processing of Aor B as required.

or B is not a single name an error will be given,

5.6 x[F NOT

Conditional test for inequality

Format:

«IFNOT (s) C =D[TEXT D]

The same rules apply as for directive *IF, but text will be assembled if

the identifiers are not identical.

Note that it is possible to specify a series of conditional

tests; text only being output if all conditions are satisfactory.

Example.

«iF (@) A=B&*IFNOT (G) C=D&
E - F [TEXT ABC]

5.7 *LISTLA

This directive sets an Assembler option to list labeis

Each label is listed on the teleprinter followed by the address
on assembly.

(for global or sub-global labels).
relative to beginning of program, and G or S

The format is:

*LISTLA (s)

5.7.1 * NOLIST

This switches off the label listing option. This

is the default setting. The format is:

*NOLIST (8)

5.8 *CHECKW

This directive is followed by an octal number and

should only be used in special FORTRAN library routines.

When input, the loader program will compare this octal

number (xxxxx - indicated in format) with the value generated by the FORTRAN

compiler to test for the number of parameters ina FORTRAN call of this unit.

If there is no checkword, no action will be taken, When a combined FORTRAN/

ASSEMBLY CODE program is necessitated it may be linked by using the

linking loader.

Ye >
SDRN/ MASIR/3

Format is:

x CHECK W (s) XXX

[where Xxxxxx represent an octal number).

5.9 *PROG

This directive is followed by a name which is stored

{as the program title) in the loader. The name specified will be a global

jabel allocated to the first location of the program unit.

The format is:

*PROG (8) MANEXY

*PROG must precede any instruction or data ina

program unit.

5.10 *NOMEM

This directive inhibits the processing of mnemonic

functions. The mnemonics for these functions are transferred to the

assembler in their original form (like other identifiers) and allow the

assembly of a program containing labels which correspond to one or more

of the mnemonic function codes.

The format is:

*NOMEM. (8)

5,10.1 *MEM

This allows the processing of mnemonic

functions. This is the default setting.

The format is:

*MEM (s)

5,11 *CHANGE

The characters

* ()
have special significance when used under normal assembly conditions.

If MASIR is used as a Macro Generator, when processing FORTRAN

tapes, for example, it may be necessary for the assembler to recognise

different characters.

Example.

To recognise ADEFINE instead of *DEFINE

or ‘A » B. instead of (A,B)

SDRN/MASIR/3 35 35

where freplaces *
: replaces ,

sveplaces (
~replaces)}

This change in characters is achieved by using the directive *CHANGE

followed by four characters which in turn replace *, (} respectively.

Example:

Using the previous example the characters *, ()

become

CHANGE (8) f:

Space separatorsbetween characters are optional, but if a line feed is used

it will give an error indication.

If it is necessary to reset to the original state, use

the form:

CHANGE @ *, ()

If fewer than four characters are to be changed, it is

still necessary to specify four in the *CHANGE directive.

Example:

“CHANGE (G) £, ()

causes £ to be used instead of * to introduce directives, hence:

£CHANGE G) *, ()

can then be used to restore to original state.

5.12 *SETDIC

This directive sets sizes of macro and assembler

dictionary (standard MASIR assumes a 16, 384 word core store). The

SETDIC directive may be used to alter this assumption and allocate space

to the dictionary areas in which macros and assembler labels etc., are

stored.

This directive takes the form:

*SETDIC m n or,

*xSETDIC sm n

where s, m, and n are integers, separated by spaces.

a+ 36 SDRN/MASIR/2

m is the size of macro dictionary required in words

of core store,

n is the size of assembler dictionary required in

words of core store (each item requires 4 words

of the dictionary).

s is the size in words of the stack which is a small

directory section next to the beginning of the

macro dictionary. (Standard setting of the stack is
128 words, and need only be changed by the use of

*SETDIC s m nin the unlikely event of a ‘stack full'

error).

Assuming a standard stack setting of 128 words, if m+n

is less than 1600 locations (approx.), both macro and assembler dictionaries

will be placed in module 9, and MASIR will run on an 8K store system, [If

m +nis greater than 1600 locations, but m is less than 1600 locations, the

macro dictionary will be placed in module § and the assembler dictionary

will be placed from address 8192 to address 8192 +n in module 1,

Ifm+tn > 1600 locations and m > 1600 locations, the

macro dictionary will be placed from address 8192 to address 8192 + m,

and the assembler dictionary from address 8192 + mto 8192+ min,

A macro or assembler dictionary may occupy more than

one store module (if store is available). Hence, m or n can be given values

> 8192 if required.

The directive *SETDIC should be used directly after the

option at the start of a compilation; i.e. before any entries have been made

in the dictionary,

5.13 *NOTITLE

This directive suppresses the output of titles to the

teletype. Titles will then be ignored in the same way as comments,

This directive also suppresses the output of the end of

unit message, normally printed when a % is read.

Format:

*NOTITLE (s)

5.13.1 *TITLE

This directive allows titles to be output to the teletype.

This is the default setting.

Format:

*TITLE (s)

SDRN/ MASIR/5 37

38 SDRN/MASIR/5

Chapter 6: MASIR OPERATING INSTRUCTIONS

6.1 Form of Distribution

The MASIR system is distributed as two tapes:

900 MASIR (Assembler Program) and 900 LOADER.

6,2 Assembler Operating Instructions ('900 MASIR')

Operating instructions for the paper tape version of

MASIR are given below. (For operation under the Disc System the

appropriate operating system description should be used).

(1)

(2)

(3)

(4)

(8)

SDRN/MASIR/5

Load the tape '900 MASIR' by initial

instructions,

Run out blanks on the punch, ensure that

output and input select switches are on

AUTO,

Enter at 16, to which the program should

reply withe—character,

Type in option in the form:

On

(letter O followed by a digit (mn) in the range

0 to 4). See 6.3 for further details in options.

Load the first tape to be assembled and the

type M to continue.

If a halt code is encountered, type C to allow

the assembly of a further tape.

When % is encountered, the tape will stop.

Run out paper tape and return to step 4 to

assemble further programs.

When one or more programs have been

assembled, tear off the tape and rewind, backwards

i.e. the part first output from the punch

should be wound onto the centre of the tape.

39

6.3 List of Assembler Options

The permitted option values and effects are:

OP TION

VALUE
EFFECTS

0 Normal assembly. Read source text and output

relocatable binary paper tape.

Check context.

As for Option 0, but no relocatable binary is generated,

however a list of labels and errors may be generated.

Macro Processing only.

The source text is expanded by Macro generation and a new

source paper tape will be punched, containing the expanded

form of each Macro. This may be used to generate Fortran

or other texts.

Macro processing with context check.

The expanded source text is output on the punch, but it is

also passed through the whole assembler to check for errors

No relocatable binary generated.

Output loader halt sequence.

This option should be used before assembly of program or

string of programs to be loaded in one sequence, It causes

a "loader halt'' sequence of characters to be output. In the

case of paper tape output this will precede the punched

relocatable binary programs and therefore will be at the

end of tape when loaded.

Use of this option is essential when the tape output is to be

loaded with a tape reader which does not stop before the

physical end of tape is under the lamp (or other character

detector).

If Option 4 is used, after punching halt sequence program

will be processed as for Option 0.

Note:

40

By including bit 4 in the option (i.e. using values 10-14, the macro

dictionary is preserved between program units. This is useful

when a large number of macros have been defined and more than

one unit is to be assembled.

Labels may be listed by the directive *LISTLA. If Option 1 orll

is used output may be diverted to the punch thus producing lists

more quickly. If errors occur the message is preceded by 10

blanks so that it may easily be detected when output on punch.

Using option 2 or 3 or 12 or 13 output may be diverted to the punch

to speed listing. The text produced by option 3 or 13 is not legal

input for SIR or MASIR.

SDRN/ MASIR/5

6.4 Loader Operating Instructions

6.4.1 Function

The loader constructs a fixed address

version of a set of programs generated in relocatable binary by the

MASIR Assembler. It may be used to load directly into core store or

produce a sumchecked binary program on paper tape.

6.4.2 Distribution

As a sumchecked binary tape called

"900 LOADER".

6.4.3 Operating Procedure

Operating instructions for the paper tape

version of the loader are given below. (For operation in the Disc system,

see the appropriate operating system description.)

(i) Load the tape ''900 LOADER" by

Initial Instructions,

(ii) Enter at16. A«~ should be
displayed.

(iii) Type an option in the form letter O
followed by an octal number, See

para. 6.6 for a list of available

options.

(iv) Load the first relocatable binary

tape in the reader and type L to

enter the Loader.

(v) If there is no Loader halt sequence
on the end of tape the reader will un-

load at the end of the tape. If a change

of option is not required, the next tape

may be loaded into the reader and may

be input by pressing the READ button.

If a change of option is required or

the last tape has been loaded, press

computer RESET and enter at 16.

(vi) However when «— is output, either

return to step (iii) and load a new tape,

or type M if all tapes required have

been read.

SDRN/MASIR/3 FO

(vii) If there are any unlocated labels

(global labels, program names or

data labels referenced from programs

loaded but not included on any tape actually

loaded), the names are printed out, each

preceded by *ULW. Ifno unlocated labels,

then GO is displayed on the teleprinter.

(viii) If after output of GO, loading was

direct into store the program may

now be started by typing M again. If

the loading process produced a binary

tape this should now be complete, run

out and tear off the tape.

(ix) If there were unlocated labels, either
return to step (iii) to load further tapes,

or type M to run the program disregard-

ing the missing labels (OV will be output

to indicate override).

If output was to paper tape and over-

ride is used the output will then be

completed. If loading was direct to

core store the program may be

started by typing M again (for the

third time).

6.5 Entry to Program

The program will be entered at the first location of

the first tape loaded (after a loader entry with option with bit 1 = zero),

unless one of the program units is entitled MAIN. If there is a MAIN

program this will be entered irrespective of the order of loading tapes.

An octal number may be typed as an option before

typing M to enter the program, this will be held in the A register on

entry.

It may perhaps be advisable that an assembly code

program with several facilities be controlled by the use of the option

input, instead of separate entry points (common with early 900 series},

6.6 List of Loader Options

The loader option is typed as an

octal number, made up of a combination of bits, which have the following

effects.

#0 4 SDRN/MASIR/ 3

BIT 1 = 0 if loader to be initialized

=]l if loader not to be initialized

BIT 2 = 0 if everything read is to be loaded.

= 1 if library scan (only programs or sub-routines that

have been called by a previously loaded program are

loaded}.

BIT3 = 0 if loader is to store program in core.

= | if loader is to output program on paper tape or into

backing store.

BIT4 = 0 if loader is to store program into backing store.

=. 1 if loader is to output program on paper tape (bit 4

is ignored if bit 3 = 0).

BIT 5 = 0 if program loaded requires 'built-in' routines, set

by previous use of bit 6.

= 1 if program to be loaded does not use the 'built-in'

routines.

BIT6 = O ignore

= 1 'freeze!' current dictionary and store layout. This

causes the routines loaded so far to be 'built-in' to

the loader store, Builtein programs are not

removed when an option with bit 1 = 0 is used. Thus

they may be re-used in different program without

re-loading them.

BIT 7 = 0 ignore

= 1 list labels

BIT & = O print first last messages

= 1 suppress first last messages

BIT9 = 0 halt after warnings,*CLW *COM

= 1 continue after warnings.

6.7 Loader Setting for Various Store Sizes

The issued Loader tape contains a Loader Setting

Routine (LODSET) which allows users to produce loaders 'tailored' to

their own requirements, and their own store configurations. The issued

tape is pre-set for use on 16384 words of core store, however, if other

store sizes are used, LODSET must be used initially. LODSET is

overwritten by operation of the Loader, and is not included on tapes punched

out by LODSET.

LODSET provides four facilities - identified by the

letters, S, F, Dand L, which are entered manually by the operator,

SDRN/ MASIR /3 we 3

They are:-

is used to set up the total store size availableto

the loaded programs, This may be less than or

equal to the actual size, which may include "'unus-

able" modules (any store size upto 131072 may be

specified), The store size must bea multiple of 8192

is used to indicate the free store in each module

of 8192 words. For each module within the store

size specified by S, the address of the highest

free location (+1) is entered. The store available

for loading is assumed to extend from relative

address zero of that module up to but not

including the given address.

is used to output a new sum checked binary

(paper) tape of the loader, with the new values

(set by F and S as standard values).

is used to output a sum checked binary paper tape

of the adjusted loader, which will load into a

specified module, instead of module 0.

Operating Instructions:

Zz +h

(1)

(2)

(3)

Input the issued 900 LOADER tape by initial

instructions, ensuring that Input and Output

Select are set to AUTO.

Enter at &.

Type one of the letters S,F,DorL. IfS,ForlL

is used the letter must be followed by one or

more integers. These must be typed preceded

by + and terminated by semi-colon.

Address may be input in module relative form

(e.g. +20041; represents address + 8392).

Only digits must appear between the + and semi-

colon, other layout characters may be used

before the +. If newline is input before the

semi-colon the number is cancelled, and may be

re-input, starting with +.

If S is typed, follow with an integer giving the

store size, e.g.:

s

+16384;

Return to step (3).

SDRN/MASIR/3

(4) If F is typed, it is followed by a list consisting of

pairs of numbers. The first number in cach pair

should be a module number in the range 0 to 15,

followed by an address, (the highest free location

+1 in the given module). The address must be in the

range +0; to +8192; .

The pair of numbers relating to module number 0

terminates the list; return to step (3).

(5) After typing D, sum checked binary tape of the

loader is output, with the new settings.

(6) After typing L, type an integer module number.

A sum checked binary tape of the loader, with new

settings, will be output. On input of this tape, the

loader will be stored in the module specified.

Example of input

S

424576;

EF

+2;

+8192; (042 to 819i #2 available)

+1;

+0; (Module | ynavailable)

+0;
+8130; (128 to 8129 available)

D

0 to 128 of Module 0 are automatically reserved.

8130 to 8191 of Module 0 must be not available if

sum checked binary programs are to be produced

by the new loader.

SDRN/MASIR / 3 #3 45

SDRN/MASIR/ 1

Chapter 7; STORE USED

7.1 MASIR Store Used

The MASIR assembler occupies the following store

locations in module 0:-

16 to 18
128 to approx 6600 [

and 8110 to 8135

The remainder of module 0 up to 8110 is used for

dictionaries, unless specified by a *SETDIC directive {the standard

version of MASIR uses the whole of Module 1 for Dictionaries). To use

MASIR on an 8K 900 Series Machine the *SETDIC directive must be used

(see Chapter 5.12).

7.2 Store Used by Loader

The Loader program uses store locations 15 to 19

and 128 to approx. 2700. Store above location 2700 (approx) is used for

Dictionary, with 5 locations taken for every global label and distinct

increment value.

7.3 Store Used by Loaded Programs

Programs are stored downwards in each module

between the freestore limits set by LODSET.

Subsequent programs are loaded into the highest

address position in which there is sufficient space. If the program cannot

be stored without overwriting the loader or dictionary, then a store full

indication is output (Error message 05).

Blank COMMON is allocated space from 128 of

module 0 upwards. It may however extend beyond location 8191 into

Module 1 and beyond, if the space is not already occupied by a program.

Program and Named COMMON will be allocated from

the high addressed end of store downwards. The space of program, local

data and named COMMON will be allocated at the start of loading each

program unit, Named COMMON blocks must not occupy more store in each

program unit than that allocated in the first unit in which they occur, whereas

it may be possible to extend Blank COMMON, if store is available.

Program must be placed ina different module if there

is insufficient room in the current module. Blank and named COMMON

blocks may extend across module boundaries.

The loader holds a record of the highest and lowest

addresses of free store in each module, which is adjusted when a program

is loaded. (If a program unit containing an absolute patch is loaded, these

addresses will not be adjusted. It is the user's responsibility to lay out

store and prevent overwriting).

SDRN/MASIR/3 *

46 SDRN/MASIR/ 1

ERROR INDICATIONS

8.1

Chapter 8:

MASIR Error Reports

The error report output specifies the ‘line of text’,

thus indicating the position of the error.

error messages and their causes:

The following is a list of possible

ERROR MESSAGE CAUSE

CALLED MACRO IN USE A recursive macro call.

i.e. call of a macro within ex-

panded text generated by another

call of the same macro.

DEFINED MACRO IN USE Attempt to define a macro

recursively.

MAGRO DICTIONARY FULL The space allocated for storing

Macro definition, is full (See

*SETDIC directive).

STACK FULL The stack used by the Macro
Generator is full, caused by two

complex a sequence of nested

Macro calls.

LINE BUFFER FULL More than 120 characters on a line

of text (not including blanks and

erases).

ILLEGAL CHARACTER A character not included in the SIR

internal character set.

PARITY An illegal parity character on the

input tape.

CORRUPT PARAMETER LIST Illegal character occurs between

name of macro and the actual

parameter list in a macro call.

*S NUMBER OVERFLOW The number which is to replace

* $ (increment) is >> 1023

NAME STARTS WITH x x = name or identifier.

This name 'x' has a first character

which is not a letter.

SDRN/MASIR/5 49

ERROR MESSAGE CAUSE

ILLEGAL FACILITY This is output if a directive or
combination of characters is not

allowed.

>5 LETTERS IN NAME *$ The increment which is to replace *g

and the name total more than6 characten

ILLEGAL TEXT FOR

PARAMETER COMPARISON

Illegal text :-
= conditional comparison on one

side of the = sign.

*$ NO, TOO BIG FOR SPACE
GIVEN

If the label preceding *$ is n

characters long the number re-

placing must not be = (6-n) *10.

MISUSED MNEMONIC A function mnemonic used in

conjunction with *$ in a macro,

*IF OR *IFNOT Illegal character used after

*IF etc.

ILLEGAL CONDITIONAL Format error in conditional

statement,

PARAMETER LIST CONTAINS

x

A formal parameter list contains

illegal character X

PATCH ERROR A patch has been used in an illegal
position, or has the wrong format.

ILLEGAL *CHANGE The directive *CHANGE consists of

=< 4 characters,

ILLEGAL *ADDMAG TEXT NOT

IN STORE FOR MACRO

The directive *ADDMAC refers to

macro text held on a peripheral,

INCOMPLETE [] PAIR OR
COUNT OVERFLOW

Count of number of nested brackets

fail.

CONTEXT ERROR Character or element illegal in

this context.

GLOBAL LIST ERROR Illegal itern in global list, or
attempt to declare a global label

as sub-global,

ASSEMBLER ERROR The Assembler program has been

corrupted,

50 SDRN/MASIR 5

ERROR MESSAGE CAUSE

*IF OR *IFNOT AND NAME = Illegal character after = sign in

conditional

LABEL DECLARED TWICE A label has been declared again

within the scope of the original

declaration.

ASSEMBLER DICTIONARY FULL The space for the dictionary of

labels in the Assembler is full.

See *SETDIC directive,

NUMBER TOO LARGE Number too large for given context

(any integer greater than 131072).

EUL Error unlocated label, A local

identifier has not been declared

as a label at the end of its block.

ERROR IN ALPHA OR OCTAL

GROUP

As stated.

ERROR IN LITERAL An illegal form of literal address.

NUMBER STARTS WITH. A fraction must be preceded by

+ or -

TOO MANY PARAMETERS There are 127 parameters in

macro call or definition.

TOO MANY GLOBALS More than 1023 global labels ina

single program unit.

RELATIVE ADDRESS ERROR Relative address of magnitude
greater than 100

TOO MANY FORWARD More than 1023 forward references

REFERENCES to local or sub-global labels as a

circuit at the line of error.

*IF & *IFNOT NAME = Illegal form after &

*NOT PERMITTED Various errors of sequence,

e.g. changing size of dictionary
after the identifier has been

inserted.

SDRN/MASIR/5 51

Loader Error Reports

8.2.1 Loader Error Messages

These are output in the form:

*LDR eeeeee NAME] NAMEZ

where eeeeee is an octal number describing the error (see table)

NAME] is the name of the current program

unit.

NAME2. is the name of the item which caused

the error.

Neither name is output for error 0. Only NAME 1 is output for odd

numbered errors, Both names are output for even numbered errors,

Error No, Cause

00 First code number is incorrect. Tape has been loaded

backwards, or it may not be an RLB tape.

Ol Sum check failure.

02 COMMON block not located.

03 Not enough room for this program unit.

04 Label declared twice.

05 Store full.

06 COMMON block name the same as a subroutine name.

07 Program unit larger than 8K, or patched program would

cross module boundary.

10 Second or subsequent definition of named COMMON

block is of greater size than first definition.

li Code number not in dictionary.

12 Unlocated label in patch.

13 Illegal format of RLB.

14 Not enough room for named COMMON block.

15 Forward reference table overflow.

52

All errors cause loading to stop.

8.2.2 Loader Warning Messages

There are two of these:

SDRN/ MASIR/5

*CLW NAME] NAMEZ2

*COM NAMEI NAME2

Where NAME] and NAME2 have the same

significance as for errors.

“CLW checkwords not equivalent.

*COM second or subsequent definition of

named COMMON block is of smaller

size than first definition; first definition

assumed, (Compare error 10).

After a warning message has been output,

loading may be continued by typing C.

When M is typed after all units have been

loaded, any unlocated labels are printed thus:

*ULW NAME

On a new line for each label.

SDRN/ MASIR/3 Bi 53

905 MASIR EXAMPLE PROGRAM

The two programs which follow will be loaded using the

standard loader, so that PROG ONE will be stored in store module 1

and PROG TWO in store module 0.

*PROG ONE
* DEFINE STG(X) [
0 +X

/5 0

]
* DEFINE SRCAL (X)
[ll Xx

8 x41]
*DEFINE TEST (A,B,C)

[4 A]
*IFNOT B= M
[6 B

7 C
«DEFINE M [9]

[NXCHAR HDOVER QCHIN READ]
READ SRCAL (QCHIN)

5 HDOVER
TEST (HDOVER, ff, READ)

SRCAL (QCHIN)
STG (NXCHAR)

TEST (NXCHAR, &77, ; + 0)
8 ;+0

HDOVER +0

[QCcHIN]

QCHIN +0 |

l This is the Character
1 Lo i > Input Routine

1

1

%

2 SDRN/ MASIR /3

*xPROG TWO
16144
[QOUT1 HDOVER NXCHAR|

PUNCH LD NXCHAR

IPO 6144
LDB +HDOVER
/LD 0
IPO 6144

*ADDMAC SRCALL[
/0 0

0 +HDOVER
/4 0]

SRCALL (QOUT1)
TER
J ; +0

NXCHAR +0
faouT1 Number Output
QOUTI +0 Routine

etc,

SDRN/MASIR/3 2 S55.

(Notes amtottrnsa to the

sik

APPENDIX A: SYMBOLIC INPUT ROUTINE (SIR)

Chapter L:

Chapter 2:

SDRN/SIR/10

i9SVE G he ae

Contents

Page

INTRODUCTION

1.1 Purpose of Routine]

1.2 Advantages of Programming in SIR 1

1.3 Inter-relation of SIR and Machine Code 1

ELEMENTS OF THE SIR LANGUAGE

2.1 Identifiers and Labels 3

2.2 Words 4

2.3 Instructions 4

2.3.1 Absolute Addresses 5

2.3.2 Relative Addresses 5

2.3.3 Identified Addresses 6

2.3.4 Literal Addresses 7

2.4 Quasi-Instructions 8

2.5 Constants 9

2.5.1 Integers and Fractions 9
2.5.2 Octal Groups 9

2.5.3 Alphanumeric Groups 10

2.5.4 Pseudo -Instructions 12

2.6 Skips 13

2.6.1 Labelled Skips 13

2,7 Comments 14

2.8 Blocks 14

2.8.1 Global and Sub-Global Identifiers 14

2,8.2 Local Identifiers 15

2.8.3 Block Structure 16

App. A (i)

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

App, A (ii)

2. 9 End of Tape and End of Program Symbols

2.9.1 End of Tape Symbol

2.9.2 End of Program Symbol

SUBROUTINES

3.

3.

3.

1

2

3

Use of Subroutines

Methed of Entry

Method of Exit

SPECIAL FACILITIES

4,1 Patch and Restore

4.1.1 Patch

4.1.2 Restore

4.2 Obeyed instructions

4.3 Edit

OPTIONS

5.1 Load-and-Go Mode

5.2 Non Load-and-Go Mode

5.3 Check Mode

5.4 Advantages in Use of Non Load-and-Go

Assembly for Large Programs

5.5 Summary of Options and Examples

ASSEMBLY AND LOADING

6.

~
n

aD

mm

Ww

Nh

1 Assembly of SIR Tapes

6.1.1 Load-and-go Mode
6.1.2 Non Load-and-go Mode

6.1.3 Check Mode

Loading of Relocatable Binary (RLB) Tapes
Combination of RLB and Mnemonic Tapes

Loading Programs into High End of the Store

6.4.1 Loading Programs up to Initial

Instruction

ERROR INDICATIONS

7.

7.
7.

2

3

1 Format of Error Indications and the Effect

of Error Indications on Assembly

Examples of Error Indications in Assembly

Error Indications given on the Loading of

RLB Tapes

Page

17

17

17

19
19
20

21

21

21

22

23

26
27

av

28

29

31
31
32
32
32,
33
34

34

37

37

38

SDRN/SIR/10

Chapter 8:

Chapter 9:

Chapter 10:

Chapter ll:

SDRN/SIR/ 10

EXAMPLES OF SIR PROGRAM

8.1 Notes on the Content of Program

8.2 Layout of Program

STORE REQUIREMENTS

SUMMARY OF ENTRY POINTS

GLOSSARY OF TERMS

Page

39

40
4l

43

45

47

App. A {iii)

App. A (i
Pp. A (iv) SDRN/SIR/10

Chapter 1: INTRODUCTION

1.1 Purpose of Routine

The 903 Symbolic Input Routine SIR has been devised

to enable programs to be written using a language, the flexible design of

which, provides the power of a modified machine code whilst retaining

many of the advantages associated with programming in a higher level

language.

SIR is an appendix to the full MASIR language

defined in Volume 2,1,1.

1.2 Advantages of Programming in SIR

The advantages in use of the modified 903 machine

code form of SIR over the use of pure 903 machine code are:

(a) The programmer can invent names to refer to

store locations used in a program instead of

having to specify absolute addresses for

locations so used. The SIR Assembler will

recognize names so invented and allocate

specific store locations for them.

(b) The programmer can write an instruction

using a constant in the address part without

having to specify where that constant is stored.

(c) Programs written in SIR can be assembied by

the SIR Assembler in any of three different

modes (load-and-go, non load-and-go or

check mode) to suit specific requirements

(Section 6.1.1 to 6.1.3).

1.3 Inter-relation of SIR and Machine Code

In machine code the format of an instruction is as

follows:

bit 18 bits 17-14 bits 13- : » i ;
4 d& 24 }

Y Vv Vv

Modifier Function Address

(1 bit) (4 bits) {13 bits)

That is, a machine code instruction consists of 18 bits. For example,

a 0100 0000010000000

SDRN/SIR/10 App. Al

This indicates the Modifier bit is set, the function

(4) 19 load accumulator is to be executed and the accumulator is to be

loaded with the contents of address (128) 19 modified by the contents of

the B register (modifier bit set).

In this form the equivalent SIR instruction tapes will

bear a one-to-one relationship with the machine code instructiontape. The

format of the SIR equivalent corresponds to the machine code in that:

A / (solidus) will represent the modifier being set;

if omitted the modifier is not set,

The function part is represented by a number in the

range 0 - 15.

The address part is represented by an address in any

of the formats permitted in the SIR language, i.e.absolute, relative»

identified or literal (Section 2.3.1 to 2.3.4).

Hence the equivalent SIR instruction could be

written:

/4 128

As it is not necessary (as a general rule} for the

programmer to know the absolute address of the data locations within a

program, the numeric address (128) ,, can be replaced by one of the other

address forms thus:

4 XDATA or

4 +2

when the SIR Assembler will allocate an address to XDATA or the constant

+2. Words in SIR can be written in either instruction or constant form

(Section 2. 2).

App. A 2 |
EP SDRN/SIR/10

Chapter 2: ELEMENTS OF THE SIR LANGUAGE

2.1 Identifiers and Labeis

An Identifier is a narmne invented by the programmer

as a substitute for an address. Identifiers can be devised using any

combination of the alphabetic characters and the digital characters 0-9,

but the first character of any identifier must be an alphabetic character.

For example:

A
HOUR Mas aa
TT6l are ail valid identifiers

MULT3S

whereas:

32BIT first character not alphabetic characters are invalid

B(LEN)6 parentheses not alphabetic or digital characters identifiers

T 52 space between T and 52 not permissible for the rea~

B-LINE hyphen not alphabetic or digital characters sons stated

Identifiers are distinguished from each other by theif

first six characters only. Thus no distinction exists between FLIGHT!,

FLIGHT2 and FLIGHTPATH.

Although a distinction is not made in the use of upper

and lower case alphabetic characters (FLIGHT, flight, fLighT and FLight

being treated as identical identifiers), however it is suggested that either

all upper case or lower case characters in an identifier be used; similarly

for all identifiers within a program.

Identifiers are 'declared' by being used as labels.

Hence, every identifier must be used as a label once

only within its range of validity, i.e. within a program, labels are

identified in a unique manner.

Any character other than the alphabetic characters

A to Z and the digital characters 0-9 can be used to separate identifiers -

A label refers to the store location into which the

word following that label is to be assembled. Labels are followed by one

or more separators. For example:

OUTPUT 15 6144

Label Word in instruction form (See Section 2. 2).

AREA -

a,
Label Word in constant form (See Section 2. 2).

SDRN/SIR/10 App. A. 3

Within a program, several labels (separately

identified) may be used to refer to a single store location. (Each label

will be followed by one or more separators). The labels need not be on

the same line as the word following and can appear on more than one

line. For example:

8 REPEAT instruction

BEGIN GO START labels

ENTRY label

4 FLAG instruction

Assuming that the first instruction is assembled in

location 2300, then the labels BEGIN GO START and ENTRY all refer

to location 2301, into which the instruction 4 FLAG is to be as sembled.

Similarly, if the first instruction was assembled in location 2336, the

labels would refer to location 2337 into which the final instruction would

be assembled.

Labels may also be used to specify an absolute

address (See Section 2.3.1), In these instances labels are written thus:

CONTINUE = 9

and location 9 can henceforward be referred to as CONTINUE.

2,2 Words

Words are the basic elements of a SIR program.

They can be written in two forms, constants or instructions, For

example:

+ 304 and are constants _ 2667

whereas:

15 2048 and are instructions
/2 CAT+10

On assembly a SIR word (which must be followed by

new line character and commence on a separate line) will occupy

one store location within the core store. Words are entered into

consecutive store locations in the order that they appear in a program,

unless the Assembler receives a directive (e.g. patch, skip, option, atc.)

to the contrary.

2.3 Instructions

Words written in the form of instructions are

introduced by a / (solidus) character or a digit. Each word consists of a

function part and an address part; both parts being separated by one or

more separator characters (e.g. space).

App. Ad SDRN/SIR/10-

If the solidus precedes the function part this indicates

that the address part is to be modified by the contents of the B register.

The function part consists of a decimal integer in the range 0 to 15; each

integer represents a 900 machine function (e.g. 4 represents the function.

load the accumulator). The address part can be written as Absolute,

Relative, Literal, or Identified (defined in 2.3.1 to 2.3. 4), An address is

assembled as an integer in the range 0 to 8191 and is interpreted at run

tirme as being relative to the start of the store module in which the

instruction is placed,

NOTE: References to locations in other store

modules are made by B register modified -

instructions.

2.3.1 Absolute Addresses

An absolute address consists of an un-

signed integer not greater than (8191) 19 and refers to the core store

location with that integer as its address, In machine code functions

and 15 the absolute address provides further specification of the function

using standard conventions.

Examples of absolute addresses are:

4 8180 Meaning, load the accumulator with the

contents of location 8180,

15 6144 Meaning, punch the least significant 8 bits

the accumulator.

2.3.2 Relative Addresses

A relative address can be one of two types;

a ‘location! relative address or a 'block' relative address. Integers used

in relative addresses must be in the range 0 to (8191).

A location relative address consists of a

semicolon followed by a signed integer and refers toa location, the

address of which is:

The address in which the current

instruction is being assembled + the signed integer value.

Examples of location relative addresses

are:

7 343 Meaning, jump three locations forward if

zero.

5 ;-1 Meaning, store in the previous location.

8 ;+0 Meaning, perform a dynamic stop.

NOTE: 8 ;0 is an invalid instruction as the integer

following the semicolon is unsigned.

App. A’5
SDRN/SIR/10

A block relative address consists of an un-

signed integer not greater than 8191 followed by a semicolon

a location with an address equal to:

The value of the unsigned integer + the

address of the first location in the current block.

Examples of the use of block relative

addresses follow.

[ONE Two] Two global addresses

START +1 j Constants
+2

4 0; Load the accumulator with the contents of

location (0+ START) = + 1

ONE Store contents of accumulator in ONE

4 1; Load the accumulator with the contents

of location (1 + START) =+ 2

5 TWO Store contents of accumulator in TWO

2.3.3 Identified Addresses

An identified address (introduced by a

letter) consists of either an identifier or an identifier followed by a

signed integer.

The assembler will replace the identified

address with the sum of the absolute address of the location (labelled ina

unique manner by the identifier) and the signed integer (called an

increment - even if negative in value). The increment must be in the

range +4095 to -4096, and the address formed by identifier + or -

increment must lie in the same store module as the identifier.

An identified address can be used in the

TEXT prior to the declaration of the identifier to which it refers

(i.e, prior to the identifier appearing as a label),

An example of the use of an identified

address is:

+0

COUNT +1
+10 3 constants

4 COUNT Load accumulator with contents of location

COUNT

2 counts | Negate accumulator and add content of COUNT

+1210

SELF 9 SELF+3 Jump (if negative) to SELF+3
10 COUNT If not, add i to COUNT

8 SELF -2 Jump to SELF -2

8 SELF +3 Dynamic stop (i.e. JUMP from SELF+3 to SELF+3)

App. A 6 SDRN/SIR/10

In this example 8 SELF - 2 refers to

4 COUNT,

In 2 COUNT+#1 and 8 SELF-2 (which

are both incremented instructions) the increments are + 1 and - 2 respect-

ively).

Although an incremented identifier may be

referred to prior to its declaration, such references increase the amount

of workspace required by the SIR Assembler. Hence, if program

necessitates a block of global work space, this should be declared early

in the program and any necessary arrays of local work space should be

declared near to the start of the block in which they occur. These points

are illustrated in the example which follows:

[MxMULT| Global Address
8 MXMULT Jump to MXMULT

MATRIX >+400 Reserve store (400 locations) for an array

MATRIX - MATRIX declared constant

+0

4 W458 Coded instruction

son Mage s 8 Further instructions

4 MATRIX +265 Reference to MATRIX array previously

declared

Further instructions

In this example if 8 MXMULT is assernbled

in location 3072, then:

4 MATRIX+265 is assembled as 4 3338 (3338 = 3072 + 1 + 265)

NOTE: Skips are detailed in Section 2. 6.

2.3.4 Literal Addresses

Literal addresses are introduced by any

one of the following symbols:

+,-,=,&, or &.

They are used to ease writing

instructions which operate on constants, Their function is indicated in

the examples which follow:

Example 1

TEN +10

oe ee eee eee

In this instance the identifier which labels

a constant to be used at some other point in the program is placed in the

address part of the instruction, Whereas:

SDRN/SIR/10 App. A7

Example 2

4 +10

In this example, the constant is placed

into the address part of the instruction. During assembly, the assembler

on reading the end of program symbol % (See also Section 2.9) allocates a

store location to the constant, places the constant therein and finally

inserts the address of this location in all the instructions using this

constant,

There are four types of literals corre-

sponding to the four types of constants available to SIR. These literals

are:

Integers and fractions

Octal Groups

Alphanumeric groups

All of which have the same format as their

corresponding constant, for example,

4 -,. 2667 Fraction 6 &7777 Octal

2 +360 Integer 4 gE5* Alphanumeric

and finally the literal type:

Quasi-instructions (detailed in the next

section 2. 4).

NOTE; Literal addresses may only be used with

functions 0,1,2,4,6,12 and 13. Any

attempt to use other functions will

give rise to an error condition denoted

by the error message EL.

2.4 Quasi - instructions

These literals are similar to their corresponding

pseudo-instruction constants (Section 2.5.4) but differ from them in the

following manner:

(1) Every quasi-instruction is introduced by

the symbol = which immediately precedes

the function bits or solidus (indicating

B register modification when present).

(2) The address part of a quasi-instruction

must be in absolute form (relative,

identified or literal addresses are signified

as errors by the error message EO),

App. A 8 SDRN/SIR/1O

Examples of Quasi-instructions are:

4 =8 90 Load accumulator with the constant 2}6 = 65536

6 =15 8191 Collate the accumulator with 131071 (binary 1

less than 2!7)

2.5 Constants

Four types of constants are available in SIR.

They are:

Integers and Fractions

Octal Groups

Aiphanumeric Groups

Pseudo-instructions

All constants must be followed by a separator

character.

2.5.1 Integers and Fractions

These are introduced by a + or - sign.

If the + or - sign is immediately followed by an integer then the constant

is stored as a binary integer. Viz.

+14 is stored as 000 000 000 000 001 110

- 64 is stored as 111 111 111 111 000 000

Integers must be in the range - 131, O71

to + 131,071 inclusive. The integer -131,072 may be written as the

pseudo-instruction /0 0 or as the octal group &400000.

If a t+ or - sign is immediately followed

by a decimal point (-) then one or more digits, the constant is stored as

a binary fraction. For example:

+ .375 is stored as 001 100 000 000 000 000

and -.5 is stored as 110 000 000 000 000 000

The fraction -1 can be written in the samme

manner as the integer -131072. Fractions can contain up to six digits.

2.5.2 Octal Groups

These are introduced by the symbol &.-

An 18-bit 903 word can be divided into six 3-bit groups, each group being

equivalent to a digit from 0 to 7, Thus a constant, can be written as an &

symbol followed by a group of 6 octal digits. For example:

SDRN/SIR/10
App. AY

& 312705 can be written to represent the binary pattern:

Oll 001 010 111 000 Lol

Ww RO
3 1

&42,.= &000042

2.5.3

2
7 0

Alphanumeric Groups

5

Octal groups of less than 6 digits can be

written and in this event the digits are right-justified, i.e.

These groups are introduced by a &

symbol which immediately precedes three alphanumeric characters.

These characters are packed (from left to right) into a store location in

6-bit SIR internal code.

900 6-bit Internal Code

This internal code is as follows:

External 6-bit Code External 6-bit Code

Character (Octal) Character (Octal)

Space 00 0 20

Newline ol 1 21

a 02 2 22

soré 03 3 23
ty

$ 04 4 24

% 05 5 25

& 06 6 26

‘ acute 07 7 27

(10 8 30
) 11 9 31

* 12 : 32

+ 13 ; 33

’ 14 < 34

- 15 = 35

: 16 36

/ 17 10 37

‘grave 40 Pp 60

Aa 41 Qq 61
Bb 42 Rr 62

Ce 43 Ss 63 —

App. A 10 SDRN/SIR/10°

External 6-bit Code External 6-bit Code

Character (Octal) Character (Octal)

Dd 44 Tt 64

Ee 45 Uu 65

Ff 46 Vv 66

Gg 47 Ww 67
———

Hh 50 Xx 70

li 51 Yy 71

Jj 52 Zz 72

Kk 53 [73
————

Ll 54 £ 74

Mm 55] 75
Nn 56 * 76

Oo 57 <q 77

NOTES: 1. On input no distinction is made between upper and lows?

case letters. Letters are always output in upper case

(i.e. caps).

2. Newline is a compound symbol consisting of the CR and

LF characters, The SIR Input Routine ignores carriage

return but recognizes line feed as significant.

3, Tab is equivalent to space.

In packing alphanumeric groups all

characters in the table given can be stored with the exception of the

following:

SDRN/SIR/10

(a) and <}-are stored as the octal

number 01 (i.e. code for newline)

and not in their own codes (Octal 76

and 77),

(b) An alphanumeric group is conside red

complete if a newline is encounte red

before three characters have been

read after the £ symbol; in this event

the group is left-justified (i.e. the

remaining characters are consideé red

to have the code 0, the code for a

space character). Newline is NOT

considered as a character within the

groups but acts as any other normal

separator. Spaces which occur i” the

three characters following the £

symbol are treated as normal

characters.

App. A 11

The prime function of alphanumeric groups

is for storing characters which are to be punched out during a program run.

It must be noted that this operation can only be performed when the program

using this function contains a print routine and a table for conversion from

internal to external code.

Examples of Alphanumeric Groups

Group Required Form in Store

Octal Alphanumeric Equivalent

&£MAN 55 41 56 MAN

shi 01 50 Ol Newline H newline

& space = newline 00 35 00 Space = Space

NOTE: The spaces in octal equivalents are for clarity purposes only.

They must NOT be punched.

Since alphanumeric groups containing

and«— cause newline code to be stored, if a representation of and « is

necessary an octal group must be used. Viz.

| Group Required Octal Equivalent
(as written)

ft & 76 77 76

A % & 41 05 77

2.5.4 Pseudo-instructions

These are identical in format to ordinary

instructions, but are used as constants. For example,

/0 O can be used to represent the integer -131072

Similarly, it is possible to obey constants

as instructions; though the intentional use of this effect is NOT

recommended. A failure to terminate an instruction sequence with an

unconditional jump (for example, the dynamic stop - Section 2.3.2 and

2.3.3) is liable to result in this undesirable effect.

App. A le SDRN/SIR/10

2.6 Skips

A skip signified thus », indicates that during
assembly a specified number of store locations are to remain unaltered

before the SIR Assembler continues filling the store with words, The
number of store locations to remain unaltered is specified by an optional
+ sign and an integer. The specification characters immediately follow

the > symbol.

Consider the following example of a skip:

+ 133 Word

>+15 Skip

4 8180 Word

5 COUNT Word

Sie. ararence Further coding

If in this example the word +133 was entered into
location 5000 of the Core Store, the Skip (+15) indicates that the next
word (the instruction 4 8180) is to be assembled in location 5016 and not
5001. 5 COUNT would then be assembled in location 5017 etc,

‘The prime function of skips is to reserve locations

for work space without actually assigning any values to those locations.

2,6.1 Labelled Skips

Locations left unchanged by skips may be
labelled in the same manner as locations occupied by words. For

example,

8 ERROR ~

=> +4

ALPHA >+10

MATRIX > +400

BETA >+10

In this example, if 8 ERROR is assembled

in location 4000, ALPHA refers to location 4005, MATRIX to 4015 and

BETA to 4415,

NOTES: (a) The last word of the 10-word vector labelled ALPHA
is addressed as ALPHA+9. Similar addressing

applies to MATRIX and BETA.

SDRN/SIR/10 App. A 13

(b) Addresses outside the range indicated in (a) can be

referred to by incremented instructions. Thus

ALPHA+11, MATRIX+1 and BETA-399 are

alternative ways of referring to the second location

of the array MATRIX. If the length of ALPHA was

changed, the increment relative to ALPHA would

have to be changed. Similarly if the length of

MATRIX was changed the increment relative to BETA

would also have to be changed.

2.7 Comments

These are included in a program to make the print

out of that program easier to understand.

Any string of characters valid inthe internal code between

parentheses ()is a comment and is ignored by the SIR Assembler. A separator is not

necessary after a comment. A comment may be inserted anywhere

between element (except in a Global Identifier List) in a program.

Comments must NOT split any SIR element. Example of a comment in a

SIR program:

9 ERROR2 (NUMBER OVERFLOW ERROR INTEGER >1310,71)

4 INT

5 Ws2

This section of program would be assembled thus:

9 ERROR4

4 INT

5 WS2

2.8 Blocks

Every SIR program consists of one or more

blocks. The start of a block is signified by a Global Identifier List

enclosed in brackets [J. This part of a block may only contain

identifiers, separators or double quotation marks. Global Identifiers and

their uses are described in the next sub-section (2. 8.1).

A code body follows the Global Identifier List and

is terminated either, by the [symbol (signifying the start of the next

block) or by the % symbol (signifying the end of the program).

2.8.1 Global and Sub-Global Identifiers

Global Identifiers from the links between

the different blocks of a program. They must be listed in the Global

Identifiers Lists at the head of:

{a} the block in which they are declared

App. A 14 SDRN/SIR/10

(b) every other block in which they are

to be valid.

One or more separators must follow each

identifier in a Global Identifier’List; only identifiers, separators and

Sub-Global Identifier markers ('') may occur between the brackets which

enclose the list. When an identifier is included in the Global Identifier

Lists of two or more blocks which are assembled together, that identifier

refers to a single address (indicated by a label in one of the blocks -

namely, the block in which it is declared). An identifier used 'globally'

in some blocks may be used 'locally' in any block in which it is not listed

as global.

Sub-Global Identifiers are signified by

the use of the double quotes '' symbol. If on its first occurrence ina

Global Identifier List an identifier is preceded by the '' symbol, it is

treated as sub-global, thereafter the '' symbol is optional for that

identifier, whereas, a Global Identifier remains in the SIR dictionary after

the end of program symbol % has been encountered (thus permitting

communication between several programs held jointly in store), Sub-

Global Identifiers are removed from the SIR dictionary when % is en-

countered. The listing of an identifier as Global or Sub-Global is

determined by the first Global Identifier List in which it occurs and is

valid for a complete program. An identifier cannot be Global in some

blocks of a program and Sub-Global in other blocks of that program.

Examples of Global and Sub-Global

Identifiers.

(MOUSE "HAMPSTER" LION WOLF]

MOUSE AND WOLF are Global Identifiers

HAMPSTER AND LION are Sub-Global Identifiers.

2.8.2 Local Identifiers

Identifiers which are neither Global nor

Sub-Global are termed Local and have no meaning outside the block in

which they are declared.

The same name can be used to represent

a Global or Sub-Global Identifier in some blocks, several different Local

Identifiers in other blocks and be undefined elsewhere in a program

(See 2.8.3 Block Structure).

As previously stated (See Section 2. 1)

each Local Identifier is declared by being used once and only once as a

label in the block for which it is valid. Similarly each Global or Sub -

Global Identifier is declared by being used once only as a label in only

one of the blocks (i.e. the block for which it is to be valid).

SDRN/SIR/10 App. A 15

%o

%

2,8, 3 Example of Block Structure

| SCHOOL "CLASS YEAR |

SCHOOL 0 YEAR

i Aa block

FORM =192 SCHOOL

7 CLASS

8 FORM

[CLASS SCHOOL "LEVEL |

CLASS 10 YEAR

4 YEAR block

9 LEVEL CLASS

8 SCHOOL

YEAR +0

[LEVEL YEAR C LASS |
block

LEVEL 8 CLASS LEVEL

YEAR => +100

[LEVEL YEAR "CLASS |

LEVEL =5095
t LEVEL 0 YEAR

10 17
8 CLASS

[cLass SCHOOL |

block

LEVEL

CLASS 10 PUPIL
4 PUPIL block

7 SCHOOL CLASS

END 8 END

-5

Block structure example breakdown: -

(i)

App. A 16

Programs are named after the Global or Sub-Global

Identifier that labels their first instruction,

Blocks are named after the Global or Sub-Global

Identifier that labels their first instruction.

SCHOOL is Global in both programs.

"CLASS is Sub-Global in program SCHOOL and

another "CLASS is Sub-Global in program LEVEL.

SDRN/SIR/10

(v) YEAR is Global in both programs and another

YEAR is Local to block ''CLASS of SCHOOL.

(vi) FORM is Local to block SCHOOL of SCHOOL.

(vii) LEVEL is Sub-Global in program SCHOOL and an-

other LEVEL is the name of the second program.

(viii) PUPIL and END are Local in block "CLASS of

LEVEL.

(ix) A third program could refer to the Global Identifiers

SCHOOL, YEAR and LEVEL,

NOTE: The program used in the example of block struct-

ure has no particular meaning, but is merely used

to identify the different types of labels and their

use in a block structure.

2.9 End of Tape and End of Program Symbols

2.9.1 End of Tape Symbol (halt code)

A halt code punched at the beginning ofa

new line on tape causes the assembler to wait pending continued assembly.

Assembly is continued when the next tape is in the reader, by re-entering

at CONTINUE (See Chapter 6).

When a program is being developed, a

tape may contain several blocks each block being terminated by a halt

code and followed by several inches of blank tape.

Halt codes are used:

(i) as a terminator on a program which

is punched in parts.

(ii) at the end of a patch.

2.9.2 End of Program Symbol (%)

On reading a % symbol at the beginning of

a new line:

(i) the assembler displays a list of

undeclared local and sub-global

identifiers,

(ii) locates all the literals in the order

in which they occur ina program,

in the consecutive locations

immediately following the program,

SDRN/SIR/10
App. A’l7?

(iii) displays a list of undeclared global

identifiers followed by a 'FIRST,

LAST, NEXT' message; this mess-

age indicates the upper and lower

limits of the store used by the

program just assembled and the next

location that can be used for the

assembly to continue.

Any other symbols (other than newline)

on the same line will be ignored; a line is terminated by a newline symbol,

A % symbol should be placed:

(i) at the end of the last tape of a

program in load-and-go mode.

(ii) at the end of each section in a non

load-and-go mode program (or

MASIR program) which is to be

assembled as a separate relocatable

binary tape.

It is convenient to end all tapes with a

halt code followed by a % symbol either, punched from an on-line tele-

printer, or from a separate tape (comprising of the characters newline,

%, newline, halt code),

App. A 18
SDRN/SIR/10

Chapter 3: SUBROUTINES

3,1 Use pf Subroutines

Subroutines are a series of instructions which are

used several times in the same program or are common to several

programs. These subroutines provide various facilities, e.g., input and

output and various useful mathematical functions (Tan, Cos, Arctan, etc.).

3.2 Method of Entry

To enter a subroutine a special function code is used:

FUNCTION CODE EFFECT

il Piace the contents of the S register

in the location specified.

The S register is an 18-bit register which holds the

absolute address of the next instruction to be obeyed. The function 11

actually places bits 13 to 1 of the S register in the location specified, and

sets the other bits of the word to zero.

Standard Subroutine Entry: -

. . link
; instruction 430 a +432 location

11 SUBR 431 instruction

instruction 433 — “

control returned

main program subroutine in another

in store part of store

The first location in the subroutine is labelled by its

name, e.g, SUBR and is known as the Link Location. It should initially be

set to a constant +0.

e. g. SUBR +0

In the given example of an entry 11 SUBR sets the link

and 8 SUBR+t! jumps to

the first instruction in the subroutine.

SDRN/SIR/10 App. A 19

3.3 Method of Exit

e.g.

201 | 11 SUBR

202 8 SUBR#H1

203 | NEXT INSTRUCTION

SUBR

Standard

subroutine

exit

On completion of the subroutine, exit is initiated by

loading the contents of the link location into the B register and completed

with the use of a modified jump return control to the main program.

The above method of subroutine entry is adequate if
the subroutine is in the same module of 8192 words of core store. Ifa

subroutine is called from a different module of store MASIR should be

used. The CALLG macro facility of MASIR enables a subroutine, written

with the above convention, to be called from a program in another store

module.

App. A 20 SDRN/SIR/10

Chapter 4: SPECIAL FACILITIES

4,1 Patch and Restore

A patch, is a directive to the SIR Assembler to stop

placing instructions, data, program blocks, etc. in current consecutive

locations and to place them (consecutively), commencing from a location

specified by the patch, At the end of a series of patches compilation of

the main program can be continued by the directive restore.

It is important that when using these facilities to en-

sure that a location, whose contents could be subsequently changed by the

SIR Assembler, remains unaltered (These locations contain in their

address part information used by SIR, changing of this information could

cause corruption of other parts of the program)

4.1.1 Patch

A PATCH is written

ta
where A is a constant or any currently located address. Its effect can be

defined as

if CPAR = -1 then CPAR:=CPA

then or otherwise CPA:=A

where

CPA is the Current Placing Address,

i.e. the address in which SIR will place the next item and

CPAR is a location used to hold a copy of

the CPA when inside a Patch (CPAR is initially set to -1 by the Assembler).

An example of a PATCH is:

f 2048

NOTE: In non-load-and-go mode a patch may be

given the value of anunlocated global label, if

neither instructions nor constants have been

translated before the patch, Other types of

address may be used without restriction. {A

global label may be unlocated when the

Relocatable Binary Tape is made, but must

be located when the tape is loaded into tape)

In MASIR the use of patches is restricted

(see MASIR Appendix B).

4.1.2 Restore

The symbol $ written by itself on a new line

causes assembly to continue from the location which would have been used

but for the intervention of a Patch or Patches. Its effect can be defined as:

SDRN/SIR/10 App. A 21

if CPAR# -1 then CPA:=CPAR

then or otherwise CPAR:= -1

Note that the restore facility is not

available in MASIR,

Example

4 +200
+ 2048

8 L
4600

8 ;t0

$
5 300

If 4 +200 is assembled into location 60,

then 5 300 will be assembled into location 61.

4.2 Obeyed Instructions

An instruction written between accents acute and

grave (“ ‘) is obeyed immediately; it is neither stored nor (in the Non-

Load-and-Go mode) is it output.

Obeyed instructions use three pseudo-registers:

A pseudo accumulator

A pseudo Q-register

A pseudo B-register

These registers are only affected by obeyed

instructions, Examples of obeyed instructions are:

‘0 COUNT *

‘14 WS *

45 3000 *

In load-and-go mode,a program may be entered at a

global identifier (e.g. START) by entering the compiler at 9 and typing

or reading “8 START.

Obeyed instructions must not be used in SIR non-

load-and-go mode.

NOTE: At least one separator must be inserted be-

tween the end of the instruction and the

terminating grave accent.

Note that obeyed instructions are not available in

MASIR, (See MASIR Appendix B).

App. A 22 SDRN/SIR/10—

4.3 Edit

Corrections to mnemonic programs are effected

using the library program EDIT. (see Vol. 2.3.2).

SDRN/SIR/10 App. A 23

Apps A 24 SDRN/SIR/10 —

Chapter 5: OP TIONS

Options are a form of directive which alter the manner in

which the SIR Assembler operates (Note that options are not used in this

form with MASIR). They are introduced by an asterisk (*) and followed by

an optional + sign and integer. Viz:

* +n

The option is placed at the head of a program, ona new

line, before the global label list. The last seven bits of the integer are

examined and variations are made in the operation of the assembler as

follows:

Bit Meaning if bit has the value Availability

1 0 Load - Non-Load Check

and- -and-Go

Go

1 Display labels |don't display Oorl Oorl Oor l

labels

2 load and go non load & go 1 0 0

4 clear the store |take no action|} 0 or 1 0 0

8 punch loader take no action 0 Oor l 0

16 continue continue 0 or 1 0 0

assembling assembling at

at 32 NEXT

32 set dictionary |set dictionary|| 0 or 1 0 0

below program | below assem-

bler

64 | perform checks| compile 0 0 1

only program

An option of *+3 is automatically assumed when assembly

is commenced by entering at 8 START. Existing optional conditions are

automatically cancelled when a new option is read by the assembler.

Options which direct the assembler to perform continuous operations are

enforced by using bits 1, 2 and 64; options to direct the assembler to

perform a single operation are enforced by using bits 4, 8, 16 and 32.

It is not possible to enforce all combinations of the options

indicated by the six bits.

A test is made initially to ascertain whether the assembly

is operating in the Load-and-go or non load-and-go mode and so the other

bits are examined (as appropriate) to identify the option required.

SDRN/SIR/10 App. A 25

The differences between the Load-and-go and non load-and-

go programs, and the action of the binary loader, are shown more fully in

Chapter 6.

5.1 Load-and-Go Mode

When the 2-bit in an option has the value one, the

assembler operates in the Load-and-Go mode, i.e. it assembles the

source, program in the compiler store ready for triggering. A loader

cannot be punched when the assembler is in the Load-and-go mode but

all the other options are available. Bits are examined in the following

order:

(i) 16 bit (continue at 21)

If the 16 bit = 1, succeeding words will be

assembled into locations, starting at

location 32, until altered by another

directive or patch.

(ii) 4 bit (clear the store)

If the 4 bit = 1, the assembler clears all

locations between the next vacant location

available for assembly to a location first

prior to the start location for the SIR

Assembler.

(iii) 32 bit (set dictionary below program)

The dictionary is the area of store where the

assembler lists all the identifiers and

literals it finds within a specific program.

It is normally stored just below the store

area that holds the SIR Assembler, but if

bit 32 =1, it is stored downwards from the

location preceding that in which the assem —

bler will place the next word, This option

may be used when storing a program in the

high end of the store (see 6.4). It is un-

usual for this option to be read first, since

the CPA has to be incremented by a suitabL ©

value to allow for the downward building o£

the dictionary (See example in 5.5). The

32 bit also has a continuous effect of supp -

ressing the checks which normally prevent

code being stored at a higher address than

the start of the loader.

A 4 pp. A 26 S DRN/SIR/10

(iv) 1 bit (Display Labels)

If the 1 bit = 1, when the Assembler finds 4

label it is displayed (i.e. output to the tele-

printer) on a new line with the decimal add-

ress of the label to which the label refers.

G and S are displayed after the addresses of

global and sub-global labels respectively.

An extra "new line" is punched when a new

block is found.

NOTE: If any error indications occur, they will

appear among the output of the labels.

5.2 Non Load-and-Go Mode

When the 2-bit has the value zero, programs are

assembled in the non-load-and-go mode (i.e. they are not assembled in

the store but are punched out in a special binary loader code) and can be

entered into the store by means of a binary loader tape. Tapes produced

by this method are called Relocatable Binary (RLB) tapes.

The only options available in this mode are ‘punch

loader' and ‘display labels'. Viz.

(i) 8 bit (Punch Loader)

If the 8 bit = 1 a binary loader is punched in

front of the binary tape of the SIR program.

This loader enables the tape produced to be

loaded by initial instructions.

(ii) 1 bit (Display Labels)

This can only be used on a machine with 4

teleprinter and a high speed tape punch, and

has the same effect as in the load-and-go

mode. The Teleprinter-Auto~-Tape switch

must be set to Auto otherwise the labels will

be mixed with the binary output, The addres®

assigned to each label is relative to the be-

ginning of the program, unless absolute

patches are used.

5.3 Check Mode

When bit 64 = 1 and bit 2 is set to zero a prograrm will

be scanned for errors without being assembled.

The only option available in this mode is display

labels, Viz.

(1) 2 bit (Main mode indicator)

This bit must be zero.

SDRN/SIR/10 App. A =?¢

(ii) 1 bit (Display labels)

This bit has the same effect as in the load-

and-go mode, but may be used ina system

which does not have an on-line teleprinter.

5.4 Advantages of Non-Load-and-Go Assembly

for Large Programs

The assembly of small programs in load-and-go mode

is more convenient than in the non-load-and-go mode; nevertheless there

are several advantages to be gained using the latter method of assembly.

They are:

(i) RLB tapes are much smaller than SIR tapes,

and are read in at a much higher speed.

(ii) Larger programs can be entered using non-

load-and-go assembly because:

(a) the program is not stored in the

computer and hence the whole store

(apart from the area occupied by the

assembler) is available to the

dictionary.

(b) during loading of the RLB tape,

dictionary space is not required for

local identifiers and literals; these

will have been eliminated during

production of the RLB tape.

(c) the loader occupies substantially less

store area than the complete assem-

bler. More store is therefore avail-

able for the program and the dictionary.

(iii) Large programs may be assembled as a set

of program units. If an error is found in one

unit it will be much quicker to re-assemble

that one unit, and then reload the RLB tapes.

To assemble the largest possible programs it is

therefore necessary to operate in the non load-and-go mode, and to keep

dictionary space required during loading to a minimum. This can be

achieved by:

(i) Avoiding where possible global identifiers,

e.g. by reducing the number of blocks, or

using sub-global identifiers.

(ii) Avoiding increments to global identifiers

which have not already appeared as labels;

dictionary space is required for an increment.

App. A 28 SDRN/SIR/10

5.5 Summary and Examples of Options

Load-and-Go Translate to Check

paper tape

2 0 64 Basic mode

1] 1 Display Labels

4 - - Clear Store

- 8 - Punch Loader

16 - - Start placing program

at 2)

32. - - Set Dictionary below

program

Add together the numbers in the appropriate column

and precede the sum by an asterisk, e. g.

* +19 Load-and-Go, start placing program at

location 21, displays labels

*+0 Translate to paper tape

* +65 Checking mode display labels

“) Load-and-go, clear store from

*422 location 21 to that immediately before

>2016 the assembly; place the diction in

«34 > locations 2047 downwards (2047 = 2016

>+2048 + 32 -1) and place the program in

locations 4096 onwards (4096 = 2016 +32

+2048).
_

App. A 29

SDRN/SIR/10

App. A 30 SDRN/SIR/10 |

Chapter 6: ASSEMBLY AND LOADING

6.1 Assembly of SIR Tapes

The SIR Assembler is read in by the initial

instructions. All tapes written in SIR code can then be read in by entering

the assembler at one of the following starting addresses:

Address Name Effect

8 START Cancel all existing dictionaries
and begin assembly

9 CONTINUE Assemble, maintaining current

dictionaries

6.1.1 Load-and-Go Mode

In this mode programs are assembled in the

store ready for immediate running. Error indications and (if required by

the options) a label list are displayed during assembly.

When a % symbol is read the assembler
locates literals, and displays a list of unlocated identifiers followed by:

FIRST LAST NEXT

Al Aé A3

where Al is the lowest address and A2 is the highest address into which

program words or data have been stored since entry was made at 8, A3

is the next address into which the program will be stored if assembly is

continued.

Example:

*19

x >10

4 X+2

5 XxX

8 ;+0

% (causes literal +2 to be stored)

would cause output on teleprinter as follows:

x 32

FIRST LAST NEXT

42 45 46

1 SDRN/SIR/10 App. A 3

If another tape were loaded after the %, the

first word on this tape will be placed in location 46,

NOTE that START entry (8) does not reset

the CPA, therefore all programs should normally be preceded by an

option (with bit 16 = 1) or a patch.

6.1.2 Non Load-and-Go Mode

In this mode,programs are output to paper

tape in relocatable binary (RLB) form; if a loader is required (by option)

preceded by the RLB tape. During loading the assembler will form and

store a checksum of the instructions.

When a % symbol is read, the literals used

are output followed by fifteen blanks and a loader halt code. Any

necessary EU messages for global labels are then displayed (EU messages

are explained in Chapter 7),

Any errors detected during assembly, halts

the punching of the relocatable binary tape and assembly continues in the

checking mode.

Several SIR code tapes separated by halt

codes, may be assembled to make one RLB tape. After each halt code,

continue at location 9.

Each RLB tape must be completed by the

assembler processing a newline % newline combination.

If more than one relocatable binary tape is

to be assembled, the assembler must be re-entered at location 8 for each

new relocatable tape, even if the tape uses global labels in common with

preceding tapes. Every RLB tape must be commenced by starting the

assembler at START (8) and reading in an option (*0, *8, *1 or *g), It

should be noted that no other option should input in connection with the

current RLB tape.

6.1.3 Checking Mode

In this mode, error indications and (if

required by the options) a label list only are displayed. The only store

used is for holding the dictionaries.

6.2 Loading of Relocatable Binary (RLB) Tapes

The binary loader is read in by initial instructions.

If during the reading of the loader a character is output continuously, the

loader has either been mis-read or mis-punched, When the loader has

been read in, RLB tapes can be entered into store at one of the following

starting addresses.

A pp. A 32 SDRN/SIR/10

—
Address Name Effect

10 START A Cancel the current dictionary, clear

store and read a relocatable binary

tape.

Start placing at location 32 unless it

begins with a PATCH to a different

starting address.

11 START B Read a relocatable binary tape main-

taining the current dictionary.

12 START C As for 10, but CPA is not reset so

that the tape will be loaded following

the previous program.

If a loader has been punched at the head of a RLB tape

using options, when the loader is read in under initial instructions the

RLB tape is automatically read in at START A.

A loader is included in the assembler and is correctly

located in store when the assembler is readin, This loader can be used

to enter RLB tapes using the entry points given above. However, once

entry points 10 or 12 have been used it is not possible to assemble source

tapes without reading in the assembler again.

During loading, a list of used global labels and their

addresses is displayed. If errors are detected, an error indication is

displayed and the loader halts; loading can continue to find further errors

by entering at START B. On reading a loader stop code loading stops;

the loader displays a list of global identifiers still to be located (each

preceded by FU) and then displays a FIRST, LAST, NEXT message as

described in 5.1. In this Al refers to the last entry at START A or at

START GC. The checksum preceding a loader stop code is compared with

the checksum the loader made during loading; these sums should be equal,

if not an error message will be output.

Every RLB tape must be terminated with a loader

stop code (i.e. the last source tape used in an RLB tape production must

end with newline % newline).

6.3 Combination of RLB and Mnemonic Tapes

It is possible to read several mnemonic tapes into the

store using the assembler, then using the loader in the assembler to read

several RLB tapes in at START B. In this instance all tapes share the

same dictionary and can communicate with each other via global

identifiers. This facility permits library subroutines to be stored as RLB

tapes and to be used by a non-RLB SIR program, Note that the last

mnemonic tape must end with new line % new line.

SDRN/SIR/10 App. A 33

6.4 Loading Programs into High End of the Store

Unless the 16 bit in the options indicates a program

is to be stored in location 21 onwards, programs read under load-and-g°

mode enter store immediately above the last program read. Programs

can be directed into a specified part of the store either by a patch at the

start of a program, or by the use of the continue at 32 option followed by

a skip.

6.4.1 Loading Programs up to Initial Instructions

A special version of the SIR As sembler

(stored from location 512 upwards) enables programs to be placed in

locations normally occupied by the standard assembler, The mode of

operation is the same as for the normal assembler. However any

program to be placed above location 512 must be preceded by an option

*34 or *35 - to place the dictionary in a suitable position and to avoid

output of errors when program is stored above the assembler. Programs

may be stored from location 3100 upwards to 8179 by this version.

Care must be taken in placing program and

dictionary since there will be no check on overwriting of the assembler OF

dictionary by program.

App. A 34 SDRN/SIR/1O

Chapter 7: ERROR INDICATIONS

Error indications given during assembly.

The following error indications are output to the teleprinter

during the assembly of SIR tapes whenever the appropriate error is

detected:-

F ene

Error Meaning Effect in Load-and-Go Mode

E0: Instruction Error

(i) function >15 One store location is left

(ii) address part of quasi- unfilled.

instruction not absolute.

El: Contextual Error

Any impermissible sequence One store location is left

of characters not giving any unfilled.

other error indication.

E2: Octal or Alphanumeric Error

{i) Too many characters in an One store location is left

octal or alphanumeric group. |unfilled.

(ii) character in octal group
other than digits 0-7.

E3: Label Declared Twice.

Label found identical to a One store location is left

previous label is block where unfilled.

previous label is still valid.

EA: Error in Global Identifier List

An impermissible sequence of The program is corrupted in

characters in a global an undefined manner.

identifier list.

ES5; Store Fuil

Program is about to overwrite The Compiler waits.

dictionary, or vice-versa.

(This may be the result of a
Patch error). (E5 after % has
been read means that there is

insufficient room to locate all

the literals used in the program).

E6: Number Overflow

(i) integer outside range - 131,07] One store location is left

to +131,071 unfilled.

(ii) more than six digits in

fraction.

SDRN/SIR/10 App. A 35

=

Error Meaning Effect in Load-and-Go Mode a

E?: Buffer Overflow

Over 120 characters in line of One store location is left

text (i.e. too many for read unfilled.
buffer).

Es: Illegal Character

(i) Misread or mispunched tape.| One store location is left

unfilled.

(ii) character on tape having no In the line of text output the

meaning in SIR (e.g. @) character is replaced by *.

E9: Stop Code not first Character

on Line

Characters other than blanks The Compiler searches for

or erases between ‘new line’ newline and then waits.

and stop code. Compilation can be continued.

One store location is left

unfilled.

EG: Global Label Error

An attempt has been made to Compilation continues.

redefine a global label as This may give spurious EU

sub-global. errors.

EL: Literal Error

A literal has been used with One store location is left

an instruction other than 0,1, unfilled.

2,4,6,12 or 13.

EP: Patch Error

A patch, or obeyed instruction, The Compiler waits.

refers to an unlocated address. Compilation can be continued.

A patch skip, option or obeyed

instruction must be read next.

EU: Unlocated Identifier

Identifier has appeared but Compilation continues

never as a label. Given at

end of block for local

identifiers,or on reading new

line % new line for global or

sub-global identifiers.

App. A 36 SDRN/SIR/10

7.1 Format of Error Indications and the Effect of

Error Indications on Assembly

There are three types of error indications on assembly

and each one is preceded by fifteen blanks.

(i)

(ii)

(iii)

EU:

EU error is displayed on a new line;

followed by the identifier which has been

detected as unlocated and an address. If

this address is 8191 the identifier has

appeared only in Global label lists or only

with an increment; otherwise, the address

is that of the last reference to the non-

incremented identifier.

The assembler continues to check the

identifiers in the dictionary. All F errors

halt the loader.

E5,E9 and EP: These errors are displayed

on a newline followed by a block count

(i.e. the number of | % encountered since

the last entry at START). Assembly halts

but can be restarted at CONTINUE.

EN (all others) EN'sinformation is displayed

as in (ii), Also displayed on the same line

is the line in which the error was detected.

Assembly continues by examining the next

line of text for errors.

In every instance of assembly to paper tape, output of

the relocatable binary tape ceases, but error indications {and labels if

requested) continue to be displayed.

7.2 Examples of Error Indication in Assembly

E216 PRINT 6 & 80000

EO 10 152048

E8 3 8;*0

Error output indicates that 8 occurs in an

octal group in block 16. PRINT will label

the location skipped by the assembler.

Error output indicates missing separator

giving rise to an impossible function in

block 10.

Error output indicates [legal character,

(probably mispunched) between ; and 0

(replaced by *).

When a EU error indication is displayed after % has

been read, it does not necessarily mean an error; it could mean that a

Global label has been referred to in a program that has not yet been loaded.

SDRN/SIR/10
App. A 37

7.3 Error Indication given on the Loading of RLB Tapes

The following error indications are given during

loading of relocatable binary, tapes:-

Error Indication Meaning |
—

FA): Mis-read or

FD): misspunched tape

FC: Label used twice

FE: Store overflow

FF: Checksum failure

loader

FP: Unallocated address as for EP

error in patch

FU: Unallocated label as for EU

two different kinds of illegal

codes on RLB tape

as for E3

as for E5

punched checksum does not

equal checksum added by

Note that:

(i)

(ii)

(iii)

App. A 38

FC is displayed when a tape with a label is

entered at START B when the same label

has occurred in a previous tape of the same

program (the presence of two identical

labels appearing in the same tape would

have been detected as an error during

assembly).

FU indications are displayed when a global

identifier occurs in one tape and refers to 4

label on another tape that has not been

entered.

FC and FU only refer to global identifiers

because all local identifiers are eliminated

during assembly of the RLB Tape.

SDRN/SIR/10

Chapter 8: EXAMPLE OF A SIR PROGRAM

The program used in the example adds up the absolute

values of ten integers in the block headed 'DATA' and stores the answer

in location ANSWER. If the sum becomes too large to store in this single

store location the letters OF are output on a new line and =/15 8191 is put

in location ANSWER.

The program is assembled by entering SIR at START (8).

The data block following the halt code can be put on a separate tape and

read in at CONTINUE,

The program can then be triggered at location BEGIN, The

data blocks occupy locations 61 to 70 and the literals occupy locations 71

to 76: the first literal being placed in the lowest address.

Example 1. Label list produced by example program

BEGIN 32 G

LOOP 36

OF 49

END 56

COUNT 58

SUM 59

ANSWER 60G

DATA 618

FIRST LAST NEXT

32 76 77

Example 2. (SIR PROGRAM EXAMPLE)

+423
[BEGIN "DATA ANSWER]
BEGIN -10 (ENTRY)

COUNT
+0
SUM
COUNT
DATA +10
s+2

;+2

+0
SUM
SUM
OF
COUNT
LOOP
SUM
END

LOOP

aa
d

Is the SUM too

large to store

in one location

O
P
O

O
O
M

H
N

O
p

O
M

h
m

: . 9g
SDRN/SIR/10 App. A 3

App. A 40

wl

OF

END

COUNT

SUM

ANSWER

H
[DATA |

DATA

Jo

+10 (PUNCH LINEFEED)
6144
+207
6144 (PUNCH 0)
+198 (PUNCH F)
6144

=/15 8191
ANSWER
;+0

+0
+0
+0

—

_—

-

S
o
h
o

h
i
m

bh

uo

bh

+65
+12

-14

-756
+602

-5

+56
+1

+0

~22

Notes on Contents of PROGRAM

(iv)

option +23 means load-and-go, list labels,

clear store and start assembly at 21.

relative addresses have been used for short

jumps and identified addresses for larger

jumps.

the identifiers here perform several roles -

LOOP, END and OF denote locations to be

jumped to. COUNT and SUM denote

workspace.

ANSWER denotes the location holding the

result.

BEGIN identifies the trigger address in the

label list.

the integer values punched for characters

used include parity. In a long program alpha-

numeric groups with a table and print routine

would be utilised for this purpose.

SDRN/SIR/10

(v) The program occupies locations 32-70 and

the six literals used (-10,40,+10, +207, +198

and =/15 8191) occupy locations 71 to 76.

Location 76 is the location for LAST in the

print-out.

(vi) The halt code is situated on new line at the

end of the first block following the comment

(HALT CODE),

(vii) % is preceded and followed by a new line.

(viii) BEGIN and ANSWER have been declared

Global labels so that other programs may

refer to them. DATA is not needed outside

the program and has therefore been

declared Sub-Global.

8.2 Layout of Program

There areno set rules for the layout of a

program, as separators can be inserted as required.

It is suggested however, that the types of layout used

in the example be adopted. Extra 'newlines' can be inserted to divide the

print out into legible portions.

If tape preparation equipment without a TAB facility

is used, it is recommended that every line is preceded by at least one

space character, except for lines starting with a label. For clarity,

labels should be punched starting at the left hand margin, and followed by

space and a data word, or newline and an instruction.

If a TAB facility is available, every line except a

label line should be preceded by TAB, and every label is followed by TAB,

then the data or instruction labelled.

SDRN/SIR 0 App. A 41

App. A 42 SDRN/SIR/10

Chapter 9: STORE REQUIREMENTS

The standard version of the SIR Assembler occupies

locations 5500 to 8179.

When assembling a program the dictionary occupies store

just below location 5500, and extends (unless option bit 32 is set) down

towards location 8 (See Chapter 5.1), Every dictionary item, label,

literal or increment, occupies 3 words of dictionary.

The SIR relocatable binary loader occupies locations 7000

to 8179. When loading a program the dictionary (of global identifiers)

occupies locations below 7000, extending towards the beginning of store.

Every global identifier, and every separate valued increment to an un-

located global, occupies 3 words of dictionary.

SDRN/SIR/10 App. A 43

App. A 44 SDRN/SIR/10

Chapter 10: SUMMARY OF ENTRY POINTS

Entry Points Action Reference

8 START 6.1

9 CONTINUE 6.1

10 START A to load 6.2

ll START B RLB tapes 6.2

12 START C P 6.2

NOTE: Locations 13 to 31 inclusive are reserved for
use by library programs. Location 20 is used

by the SIR Assembler as a continuation address

for re-entry at 9.

SDRN/SIR/10 App. A 45

App. A 46 SDRN/SIR/10

Chapter 1l; GLOSSARY OF TERMS

In the following glossary a brief explanation of each term is

given followed where necessary by a reference to a chapter where a full

definition or explanation can be found.

ALPHANUMERIC CHARACTER - any alphabetic or numeric tape character

which has a six bit internal code representation (Chapter 2.5, 3).

ALPHANUMERIC GROUP - a group of up to three ALPHANUMERIC

CHARACTERS (Chapter 2. 5.3).

ASSEMBLER - the program which reads and translates programs writteD

in SIR code (Chapter 6.1) known as the SIR Assembler.

BLOCK - the main division of a PROGRAM: It comprises a GLOBAL

IDENTIFIER LIST followed by a CODE BODY (Chapter 2.8).

BLOCK RELATIVE ADDRESS (N;) - location N is the address of the

current block, when N is an unsigned integer. (The first location of a

block is relative location zero) (Chapter 2.3.2).

CODE BODY - the whole of a block apart from the GLOBAL IDENTIFIER

LIST. It ineludes constants, instructions and work-space (Chapter 2. 8).

COMMENT - information is inserted into SIR programs but ignored by the

ASSEMBLER, is used for clarification purposes in the print-out of the

program.

CURRENT PLACING ADDRESS (CPA) - the address where the next wo rd

will be placed by SIR (Chapter 4, !).

CURRENT PLACING ADDRESS RESERVE (CPAR) - a location holding @

former placing address used in conjunction with the patch and RESTORE:

facilities (Chapter 4. 1).

DECLARATION - the use of an IDENTIFIER as a LABEL.

DICTIONARY - an area of store where the ASSEMBLER keeps a list of

IDENTIFIERS, INCREMENTS and LITERALS with references to the

locations to which they refer.

DIRECTIVE - a PATCH, RESTORE, SKIP or OPTION. Directives tell the

ASSEMBLER how and where it is to store the translated program.

DISPLAY - to output information on the teleprinter. If no on-line tele —

printer is fitted such information will be output on the punch.

GLOBAL IDENTIFIER - an IDENTIFIER having the same meaning in

several PROGRAMS (Chapter 2.8. 2).

7
SDRN/SIR/10 App.A

GLOBAL IDENTIFIER LIST - the list of GLOBAL and SUB-GLOBAL

IDENTIFIERS, valid in the BLOCK it heads, it is enclosed in square

brackets and occurs at the head of each BLOCK (Chapter 2.8. 1).

HALT CODE - a character punched on a SIR mnemonic tape, at the

beginning of a newline, which causes the ASSEMBLER to wait.

IDENTIFIED ADDRESS - an address consisting of an IDENTIFIER alone oF

an IDENTIFIER followed by an INCREMENT (Chapter 2. 3. 3).

IDENTIFIER - an invented name used as substitute for an address

(Chapter 2.1) or the name of a macro.

INCREMENT - a signed integer following an IDENTIFIER to modify its

meaning (Chapter 2.3.3).

LABEL - an item in a program located by an IDENTIFIER or located

absolutely by being equated to a numeric address preceding a word and

referring to a location containing that word (Chapter 2.1).

LABEL LIST - a list of LABELS together with their addresses which can

be DISPLAYED during ASSEMBLY (Chapter 5. 2).

LITERAL - a constant appearing as the address part of an instruction

(Chapter 2.3.4).

LOAD AND GO - a mode of operation in which a SIR program is as sembled

into the computer store for immediate use. cf. NON-LOAD-AND-GO

(Chapter 5.1., 6.1).

LOADER - a tape read in by the initial instructions. It reads

RELOCATABLE BINARY TAPES into the store (Chapters 5.3, 6.1, 6.2).

LOCAL IDENTIFIER - an IDENTIFIER which retains its meaning only

inside the block in which it is declared (Chapter 2.8.1).

NEW LINE - is compound symbol and consists of the sequence "carriage

return, line feed". The SIR input routine neglects carriage return and

recognises line feed as significant. The corresponding output routine

produces the sequence "carriage return, line feed, blank. "'

NON-LOAD-AND-GO - a mode of operation in which a SIR program is

translated to a RELOCATABLE BINARY TAPE (Chapters 5,2, 6.1. 2).

OBEYED INSTRUCTION - an instruction which is obeyed immediately it is

read (Chapter 4. 2).

OPTION (+N) - a DIRECTIVE to the ASSEMBLER which enables the

programmer to vary the way the assembler operates (Chapter 5).

App. A 48 SDRN/SIR/13

PATCH (t +N) - a DIRECTIVE used to correct or control the placing of

SIR program. It instructs the assembler to store program in location N

onwards (Chapter 4. 1).

PERCENT sign (%) - the end of program symbol. On reading it the

ASSEMBLER locates constants and checks for undeclared identifiers

(Chapter 2.9.2).

PROGRAM - a sequence of blocks terminated by a PERCENT SIGN.

PSEUDO INSTRUCTION - an instruction not intended to be obeyed.

For example it can be used as a constant. It is written in an identical

format to that used for other instructions (Chapter 2. 5. 4).

QUASI-INSTRUCTIONS - a literal address in the form of an instruction

(Chapter 2,4).

RELOCATABLE BINARY (RLB) TAPE - a special tape holding a SIR
program which is output in NON-LOAD-AND-GO assembly (Chapters 6.1,

6. 2).

RESTORE ($) - a DIRECTIVE which cancels the effect of a PATCH or

series of PATCHES by restoring the placing address to its original value

(Chapter 4.1).

SEPARATOR a space or newline. It is used to separate different SIR

elements.

SIR - the name given to the 900 Series Assembler (g.v) basic version for

8K stores.

SIR CODE - the set of characters which have representations in six bit

internal code.

SIX-BIT INTERNAL CODE - the code in which the ASSEMBLER stores

characters three to a location (see code table, Chapter 2.5. 3).

SKIP (+N) - a DIRECTIVE, normally used to reserve store space, which

instructs the assembler to leave the next N store locations unaltered

(Chapter 2.6).

SUB-GLOBAL IDENTIFIER - an IDENTIFIER having the same meaning in

several BLOCKS (Chapter 2.8.1).

App. A 4
SDRN/SIR/10

pp 9

App. A 50 SDRN/SIR/10

PATCH (t +N) - a DIRECTIVE used to correct or control the placing of

SIR program. It instructs the assembler to store program in location N

onwards (Chapter 4. 1).

PERCENT sign (%) - the end of program symbol. On reading it the

ASSEMBLER locates constants and checks for undeclared identifiers

(Chapter 2.9.2).

PROGRAM - a sequence of blocks terminated by a PERCENT SIGN.

PSEUDO INSTRUCTION - an instruction not intended to be obeyed.

For example it can be used as a constant. Itis written in an identical

format to that used for other instructions (Chapter 2. 5.4).

QUASI-INSTRUCTIONS - a literal address in the form of an instruction

(Chapter 2.4).

RELOCATABLE BINARY (RLB) TAPE - a special tape holding a SIR

program which is output in NON-LOAD-AND-GO assembly (Chapters 6.1,

6. 2).

RESTORE ($) - a DIRECTIVE which cancels the effect of a PATCH or

series of PATCHES by restoring the placing address to its original value

(Chapter 4.1).

SEPARATOR a space or newline, It is used to separate different SIR

elements.

SIR - the name given to the 900 Series Assembler (g.v) basic version for

8K stores.

SIR CODE - the set of characters which have representations in six bit

internal code.

SIX-BIT INTERNAL CODE - the code in which the ASSEMBLER stores

characters three to a location (see code table, Chapter 2.5. 3).

SKIP (+N) - a DIRECTIVE, normally used to reserve store space, which

instructs the assembler to leave the next N store locations unaltered

(Chapter 2.6).

SUB-GLOBAL IDENTIFIER - an IDENTIFIER having the same meaning in

several BLOCKS (Chapter 2.8.1).

App. A 4

SDRN/SIR/10 PP Z

App. A 50 SDRN/SIR/10

Appendix B: DIFFERENCES BETWEEN MASIR AND SIR FACILITIES

SDRN/SIR/10

All 900 SIR facilities are described in Appendix A of this

manual. The following facilities are either restricted or are not avail -

able in MASIR:-

(a)

(b)

Obeyed instructions (Chapter 4.2 SIR - Appendix)

are not available.

Options (Chapter 5 - Appendix) are not available in

MASIR, These are replaced by directives (see

Chapter 4 MASIR).

The use of the PATCH facilities (Chapter 4.1.1

SIR) is restricted. A patch to a global label or

absolute address may occur only at the beginning

of a program unit.

The restore facilities (Chapter 4.1.2 SIR) is not

available in MASIR.

The use of instruction format

/15 NAME

as defined in SIR Language description is restricted

to communication between store modules (where

NAME is a global label). See Chapter 4. 3(a) of

MASIR.

LABEL = 2000 facility is extended to allow the

construction of any absolute address. Example:

LABEL = 500 f 2

This label called LABEL is associated with the

address 16884 (or 500+8192*2).

App. Bl

a

—
—

~
~

+
—

Appendix C: MAPLOD (LABEL LISTING PROGRAM)

Function;

MAPLOD is a self contained program used with the 900 RLB

loader, to list program labels with addresses assigned to these labels by

the loader. It can also list unlocated labels and the references made to these

labels in the user’s program, and the amount of free store still available

in each module. (NOTE. Free store is not meaningful if absolute patches

have been used).

Distribution:

MAPLOD is distributed as a sum checked binary tape, suitable

for input by Initial Instructions. Two versions are supplied:

(a) <A start address at 4996 t L; this is the version normally

used.

(b) <A start address at 256+ L; this is for use when version (a)

would overwrite the loader dictionary or the loaded

program. It has the disadvantage that it overwrites part

of the loader.

L indicates the store module which contains the loader.

Operating Instructions:

i, Using the 900 loader, load RLB tapes as usual,

2. If output is required on paper tape, set SELECT OUTPUT

to PUNCH and run out a blank leader,

3. Load SCB of MAPLOD version (a) or (b) under Initial

Instructions. It will be stored in the same module as the 900 loader

and will self trigger.

4, Type:

L for located labels and addresses

U for unlocated labels

R for references to unlocated labels

A list of free store is output at the end of each of the above lists.

An asterisk output on a line by itself indicates odd parity on

teletype input.

The result is undefined if the R option is used after loading to

paper tape or backing store (loader option bit 3 set).

SDRN/ MASIR/3
App.Cl

Store Used:

MAPLOD occupies 558 words of store.

Its SCB loader occupies locations 8132 to 8179 inclusive.

App. C2 SDRN/MASIR/3

