
ELLIOTT

Volume 2: PROGRAMMING INFORMATION

Part 1: PROGRAMMING LANGUAGES

‘Section 2: ALGOL

Contents

Preface ..°.0 oe ce eo 02 20 06 0s 20 oe 08 oF 00 oe iv

Chapter 1: SYSTEM SPECIFICATION

1.1 Elliott 903 Algol Representation .. os s+ +s ee 1

“fie dy Basic Symbols ss e+ os se 06 + 06 0 2

1 The Characters erase, runout and halt 2

Punching Instructions .. «+ + «+ «+ 3
The Use of Single Case .. os o+ «+ oe 4
Notes to the Programmer .. o- o« +s 5
The Program .. c+ os e+ 08 eo +e oe 5

The Use of Elliott Algol Program P
e
r
e

P
e

R
e
e

e
e
e

D
a
u
b
h
w
n
r
d

e
e

Sheets... 1. +o oe ee ee oe 06 08 08 oF 7

11.7 Correction of Algol Programs ..6 o. 7

1.2 Restrictions and Programming Notes .. «o o- 8

1. 2. 4 Restrictions... 6. so 0+ 0+ os ee ts ee 8

1.2.1.1 The Declaration of Labels oo 6 8

1.2.1.2 Type of Arithmetic Expressions ,... 10

1.2.1.3 for statements .. 6. 01 oe oe ee oe ee 610

1.2.1.4 own declarations .. 2. es ss ee eo ee 10

1.2.1.5 Specification of Parameters 10

1.2.1.6. Recursive Procedures 0. «+ + 10

1.2.1.7 Parameters.. 66 se wees se ee ee oe 1

1.2.1.8 Type Procedures .. 6s es ee ee ee oe Ll

1.2.1.9 Sequence of Declarations il

1.2. 1,10 Length of Identifiers... .. 2. oe ee ee Lt
COMMENT 12. Dey (3) Ihe

Copyright English Electric Computers Limited i

May, 1968 (Issue 4)

900

2. ded

' Page

1,2. 1.11 Reserved Identifiers .. 1.1 ee ee «+ os ll

1.2.1. 12 Limits we fee o> ele leis ew: oie: vam sone [dele 11

1.2.2 Programming Notes.. +. ++ ++ ee ee ee 12

1.2.2.1 Range and Precision of ehniseed we we oe 1Z

1.2.2.2 Sequence of Operations... «1 «1 ++ ee ee 13

1.2.2.3 Boolean Expressions «1 ++ «+ ++ ee oe 13

1.2.2.4 Correspondence Between Povnal naa

Actual Parameters ++ 6. e+ ee ee ee ne 14

1.2.2.5 goto if he ag +H oe om ool oul ge me we 15

Chapter 2: INPUT AND OUTPUT

2.1 Introduction ¢ Seosm ae Re 8 16

2.1.1 Print and Read Btabervents te oR se wm we 16

2.1.2 Structure of Read and Print Lists.. 16

2.1.3 Input Data Tape .. 6) ee te ee ee eee Li.

2.1.4 Output of Text 2. 61 ee ee ee ee ee ee 18

201.5 Output of Text 6. 61 ee ee ee ee ee ee 19

2.2 Setting Procedures .. «1 ++ ee ee ee te te ee sx 20

2.2.1 Device Setting Procedures... «1 «+ «+ +s ' 20

2i2eZ Prefix Setting Procedures «+ ++ os at

Ze 2u3 Format Setting Procedures We MR RR ES 21

2.2.4 Alarm Printing .. 6) 66 ee ee ee ee ee 22

2.2.5 Parameters out of Range .- «. «+ ++ es 23

226 Input and Output of Strings... .. «+ «+ +. 23

QeiBiel Procedures in Read and Print Dieta ba we 24

Chapter 3: STANDARD PROCEDURES

3.1 Introduction . ee a 25

3.2 Algol Standard Finetens a ee ee ee 25

* Ba 2el real Procedures .. 6. 1+ ee ee te ee ee 25

322 integer Procedure sign(E) ++ ++ ++ 25

3: 203 Entier wa ‘we we ee we ees Fe ee ae eM 25

3.3 Checking Functions .. 6. ee ee ee ee ee ee nee 26

3.4 Machine Code se 98 ¥ ME GR OT FR GR GR te 20

3.4.1 Declaration in 1 Algol tet ie we Re FH as 27

3M’ As written in SIR oe wk we WE HS ee es 28

3.4.2.1 Scalar Parameters «1 1+ e+ ee we ee ee 29

3.4.2. Result of a Type PiHcadude Laie ima one om 29

3.4.3 Rules for SIR Blocks .. «+ «+ ee ee ee 31

3.4.4 Array Parameters «1 ++ ee ee ee ee ee 32

3.4.5 Label Parameters .. «1 ee ee ee ee oe 34

3.4.6 Switch Parameters .. 1. 1. ee ee ee ee 35

3.4.7 String Parameters wi Bon wet he 36

3.4.8, Use of Interpreter Sdbvousines Si a HES 36

3 49 Real Parameters née be Oe oe Be we we 37

3.4.9.1 Unpacking... 1.1 66 ee ee ee ee ee ee 37

ii
(Issue 4)

900
Ql. Z

Page

3.4.9.2 Packing .. 12 «eo es «6 oF «8 oF oe 37

3.4.9.3 real Parameters called by name oe ee §=638

3.4.9.4 Integer to real conversion «2 «- 38

3.4.9.5 Real to integer conversion «2 «2 38

3.4.10 User of interrupts in SIR code procedures 38

3.4.11 Loading Machine Coded Procedures ~- 40

3.4.11 As an extension to the library 40

3.4.11 At Run Time oe. oe. ae ot ce “ee 2s os 40

3.5 The Library... -. oo oc oe os se 06 oe oe oe 40

3), Sal Structure of the Library.. «2 «- 41

3 B.c.2 Adding procedures to the Library «0 41

3.5.3 TOWHOUNGs: wi we se se: oe ee ee we «| AE

3.5. 3.5.4 amo Gin s “eyes WME cos + si) e's feien (een pee ee” | ae

3.6 Control Procedures... .. s+ oe se oe ce of of 42

3% Gol STOP... .. as a4 Gi sa ae we we we . #2

3.6.2 WALT ..3 ss sl oe sf sw we we we wre 42

Chapter 4: ERROR INDICATIONS

4,1. Errors During Translation of Program rr 43

4,1,1 Run in Translation Mode (start at 8 or 12) 43

4.1.2 Run in Report Mode (start at 10) as ws 43

4.1.2. Warning Messages .. «2 «+ «2 oe oe 44

4.1.2. Report Messages +e ae fa ee . ' 44

4.1.3 Error During Library Scan «2 «. 45

4.1.4 Undetected Errors .. 16 «2 «6 «2 ef 45

4.1.5 Error Table at Translation Time .. . 45

4.2 Errors During Loading of the Program ee ye we 49

4,3 Errors During Running of the Program SusHmceen aie 50

4.3.1 Undetected Errors .. «+ «2 «+ «+ oe 50

4.3.2 Error Table at Run Time .. «2 «2 o- 51

Chapter 5: OPERATION OF THE ALGOL SYSTEM

5.1 General .. «2 «ee oo oF of oF 20 e 28 oe oe 53

5.2 Translation .. 6. se 22 ee ee ee #6 ee oe ee 53

5.3 Loading and Running we WS me ow ow cs ee ee «BA

5.4 DUMP facility .. «2 «+ «6 «2 e6 oF e8 cf of 55

5.5 Altering the built-in library .. «. «2 e+ 26 «- 56

Appendix 1: COMMON ERRORS MADE IN PROGRAM WRITING

Appendix 2: NOTES FOR USER'S OF ALGOL ON 920 COMPUTERS

Appendix 3: USE OF OPTIONAL PERIPHERALS

Appendix 4: USE OF EXTRA CORE STORE

Appendix 5: USE OF NON-STANDARD PERIPHERAL DEVICES

iii

SDRN/ALGOL/13
(Issue 5)

900

2,132

Preface

The Algol system described in this manual can be operated on

all computers of the 900 series.

The main body of the manual refers to a particular computer -

the 903 - and one particular paper tape code - the 4100 (ISO) code. It
can be read without change to refer to any other 900 series computer that

uses the same paper tape code. Of course care must be taken that any machine

code instructions contained in an Algol program obey the rules and

conventions appropriate to the computer being used (see para. 3. 4) and the

peripherals attached to it. :

Appendix 2 gives details of the changes to be made to the manual

if it is to be used with a computer for which tapes are punched in 503

telecode, or one for which the tape readers are not designed to stop on a

single character.

(Issue 4)

900

26 ded

Chapter 1: SYSTEM SPECIFICATION

Minimum Configuration

The minimum configuration is a 903B computer equipped

with 8192 words of core store, an input paper tape reader and an output

punch.

Method of Operation

903 Algol produces an object program on paper tape which

may subsequently be re-input for execution.

Efficiency

The translation speed is about 80 characters per second.

Algol programs containing a normal proportion of floating point calculations

will run at one fifth the speed of the corresponding machine code program.

Form of Distribution

903 Algol is distributed as a set of three binary tapes:-

(1) The translator in sumchecked binary.

(2) The interpreter and library combined in sumchecked binary.

(3) The library tape in sumchecked relocatable binary.

1.1 ELLIOTT 903 ALGOL REPRESENTATION

An alphabet of 68 characters is available for punching

a program:-

A-Z 26

0-9 10

quote signs ’ * 2

quote sign '' 1

punctuation , . :3 4

number signs +- * / ,of 6
relations < => 3

brackets () [] 4

space 1

carriage return 1

line feed 1

erase 1

runout 1

halt 1

non Algol characters

t$%R EX
Total 68

il
(Issue 3)

900
2.1.2

1. d.: T Basic Symbols

Algol Symbol 903 Hardware Recommended mode

Representation of writing the symbol

a-@% A-Z a-@

0-9 0-9 0-9

+- / +-/ +- /

x * *

+ DTV" div

<=> < => <2

< "LE" le

> "GE" ge.
wNEM ne.

a "AND" and

U "OR" or
— "IMPL" impl

= "EQUIV" equiv

~ "NOT" not

re F310 » © HF 40 re thao

() C1) ()C] () CJ

Lt} <space, newline, etc>

begin end etc "BEGIN! "END! begin end etc

etc

"CODE" "ALGOL" code algol etc

etc

1.1.1.1 The Characters erase, runout and halt

The characters erase and runout may appear

anywhere and are always ignored. The character halt is for stopping the

computer at the end of a data tape or tape of Algol text, in order that the

data or Algol text may be fed in as a series of separate tapes.

2

(Issue 3)

900
2.1.2

1,132 Punching Instructions

A 903 Algol program may be punched on any one of

several types of tape perforation equipment

operating in the ISO code. Whatever equipment

is used, the punched tape should either be verified

or printed up, and the print-up produced from the

tape checked against the original program

manuscript.

On some equipment, new-line is punched as a single character,

while other equipment uses separate carriage-return and line-

feed characters. On the latter equipment N consecutive new-

lines should be punched as:-

(2)

(3)

(4)

(6)

carriage return, N line feeds, blank.

Capital and small letters are both punched as

capitals,

Underlining is represented by double quotation marks

e.g. begin real a; is punched as "BEGIN" "REAL" A;

Algol programs will be written either on a pre-

printed form (the Elliott Algol Program Sheet) or on

lined paper with some vertical lines added. The

heavy vertical lines every six columns indicate

where each line of print should start.

Punch exactly what is necessary to produce a print-

out like the written program, i.e. all blank lines,

spaces, etc. Consecutive words, or consecutive

underlined words, should be separated by a space.

In general, the exact number of spaces, carriage

return and line feed characters is not critical, but

punching the correct number will improve the

general appearance of the print-up. However,

between the characters ’ and ‘ the text must be

punched exactly as written.

Care must be taken to avoid confusion between

characters, in particular between the figure 'l' and

the letter 'f', and also between the figure '0' and

the letter 'O', These must be punched correctly

and punch operators should familiarise themselves

with the difference in print of these characters.

3

(Issue 3)

900

2.1.2

(7)

(10)

(11)

There should be a runout of blank tape at the beginning

and end of every tape punched.

A wrong character may be cancelled by overpunching

with 'erase'. This erase character does not contribute

to the number of characters which may be punched in

one line (See 12 below).

Every semi-colon should be followed by three or more

blanks. These blanks are a device to simplify editing

if the program is subsequently found to need modification.

Their omission is not an error, but is nevertheless

undesirable.

A halt code character must be punched at the end of

every program tape, or at the end of every section of

program tape if the program is punched in parts, and

also at the end of every data tape.

If it is impossible to punch one line of manuscript on

one line of paper, a new line may be started anywhere

except:-

Between : and = of :=

Between the string quotes ’ and *

If it is necessary to split a word or number (and

overpunching with erase and repeating the word or

number on a new line is usually preferable) a hyphen

must NOT be inserted.

The symbol := is punched as : (colon) followed by

= (equals). No characters other than blank or erase

may be punched between these characters.

There must not be more than 120 characters in a line.

1.61.3 The Use of Single Case.

In 903 Algol only one case of letters is

available for the formation of identifiers. Programs which contain identifiers

which are identical except for the use of upper-and-lower-case letters must

be adapted in such a way that all identifiers which were originally distinct

remain distinguishable when printed in a single case.

It is recommended that programmers should

use only lower-case letters, although they will appear as upper-case on

the printed version of the program. If it is necessary to change an

identifier in a published program to avoid clashing, it is recommended

4

(Issue 3)

900

2 de 2

that one or more capital letters should be transcribed as pairs of the

corresponding lower-case letter (e.g. A should appear as aa). If this

produces a further clash of identifiers, each pair should be followed by a

number sufficiently high to avoid all further clashing (e.g. aal, aa2, etc.).

1.1.4 Notes to the Programmer.

(1) Algol programs may be written on a pre- printed form

(Elliott Algol Program Sheet) or on lined paper (on

which a series of vertical tabulation lines have been

drawn).

(2) The programmer must clearly differentiate between

the figure 'l', the letter '2', and also between the

figure '0' and the letter 'O'. The use of continental

l and #is strongly recommended for manuscripts.

(3) There must not be more than 120 characters on a line.

1; 1.5 The Program

Every Algol program written for the 903 must

be preceded by a title and the program must be followed by a semi-colon

and a halt code in that order,

A title consists of a string of letters or digits

of which the first character is a letter. It is terminated by a semi-colon.

The first six characters of the title will be reproduced on the on- line

teleprinter when the program is run*. t

The title may also include spaces, carriage

returns and line feeds, but these should not occur among the first six

characters.

A title may not be the same as one of the

Algol library procedure names (see Paragraph 3. 4) and if it starts with the

letter Q it must have U as its second letter.

The title should be used to give enough

information to identify the program and the programmer uniquely. Each

installation is encouraged to establish its own standard practice for the

writing of titles.

% Note: If an on-line teleprinter is not fitted, anything which would have

been printed by it will be punched by the punch, Henceforth, the verb

‘display! will be used for 'print out on the on- line teleprinter'.

5

(Issue 3)

900
261.2

él 81 ai

“saTYSpIopsey
“PIOHeM

“py]
ssorg

esarD
ose

syooys
urewo1g

IOOTy
N
o

jo
sionddng

:a,0\7

“suid}
‘poomureysiog

“p27
(uopuoy)

susy201g
2204/3

i
99

09
¥s

or
wy

9

Of
L4

8!
4}

9
st

Pa
144

3
Fs

Fz 4

P
<4

Ey
IZ

4 61

81

ai

91

Sl

bal

gl

Al ul

Ob

6 8 Z 9 s ¢ £ t U

99
oo

vs
oy

w

concen nhten shes Sscvorsanuecsastonertsssisaccarseveesdbsctg sisaris W
V
u
5
0
u
d

1
0
9
1
V

L
L
O
I
N
S

(Issue 3)

900

2a lee

Since the title is not part of the program, a

comment may not occur immediately after the semi- colon which ends the

title.

1136 The Use of Elliott Algol Program Sheets.

Elliott Algol Program Sheets (see Page 6)

have been designed to enable the programmer to indicate to the punch

operator the exact layout of his program. For this purpose, one and only

one character should be written in each cell; a cell which does not contain

a character will be treated as a space if it occurs in the middle of a line;

after the last occupied cell of a line, a change to a new line will be punched.

At the end of each program sheet three blank lines will be punched,

The cells are grouped in units of six by means

of a firmer line. This is an aid to punch operators in counting the number

of spaces required on a deeply indented line. It is recommended that

identation should be a multiple of six.

For identification purposes, the title of the

program should be written at the head of each sheet. If the sheet contains

a recognisable subsection of the program, a subtitle may be used. These

letters and subtitles at the head of the sheets will not be reproduced on the

punched document. Therefore, the first sheet of the program must contain

a copy of the title written in the text of the program, as well as at the head

of the sheet.

11.7 Correction of Algol Programs.

Any errors in an Algol program, whether of

a syntactic nature or in the actual formulation of the problem, must be

corrected in the source language. There is no means of making

corrections to the compiled program in the store of the computer.

To assist the programmer in editing his

tapes, the halt code character is available. To insert a statement or

group of statements into a program after a given statement, S say,

punch a halt code on the tape immediately after the semi-colon that

terminates S. On reading the halt code, the computer will come to a

systems wait. Then translate the additional statements (the last one

having a halt code after the terminating semi- colon), and finally continue

translating the original program.

The halt code facility also permits a program

to be punched in sections on separate tapes, each section having a halt

code at the end.

According to the punching instructions, three

or more blanks should be left after every semi-colon of the program. If

this has been done, it is an easy matter to insert a halt code wherever

necessary.

7

(Issue 3)

900

2.1.2

Alternatively, a 903 Algol program may be

modified by the use of the 903 Edit program (Volume 2.3.2).

1.2 RESTRICTIONS AND PROGRAMMING NOTES.

This section describes a number of restrictions imposed

on the full generality of Algol, and mentions restrictions which are part of

Algol and whose effects are frequently overlooked.

Leitiesd. Restrictions

1.2.1.1 The Declaration of Labels.

Any labels used to label a statement in the

compound tail of a block must be declared in the head of that block:

switch ss:zlabell, label 2, ..-. ;

The switch identifier is obligatory, even if it is not

used in a statement of the program. Any identifier different from the other

identifiers of the program may be used for a switch, but the use of a sequence

of the letter 's' is recommended as standard practice, except where this

would cause a clash with other identifiers.

Care must be exercised in declaring labels in blocks

to which they are local. It is inadmissible to declare labels of an inner block

in an embracing block. Note the difference between a compound statement

and ablock. The following is a scheme of correct label declarations: -

begin switch s:= Ll, L2, L3;

Le, begin switch ss:= 13, 14, L5, L6

L3:

begin comment compound statement;

L4:

end compound statement;

for do

L5: begin

L6; goto L5;

end for statement;

end block L23

L3;

end;

(Issue 4)

900

2x ded

A label may not prefix a statement in a procedure

body unless it is declared in the same procedure body. This may involve

turning the statement which forms the procedure body into a block by attaching

a begin and end and a switch declaration.

(1) Unsigned Integers as Labels.

Unsigned integers may not be used as labels, where

they occur in a program, they should be turned into identifiers. The

recommended practice is to precede each number by a sequence of one or

more’ L's.

For example 23: might become L23 or LL23;

(2) Switches.

The elements of a switch list may only be labels.

These labels must be prefixed to statements of the block in the head of which

the switch declaration occurs. The occurrence of a label in a switch list

serves as a declaration of that label and, therefore, no label can occur more

than once in the switch declarations of any one block.

If in a published program these conditions are not

satisfied, the switch declaration must be replaced by a portion of program

which achieves the desired effect. It should seldom be necessary to do this,

and no general rules are given.

If a goto statement uses a switch designator, and the

subscript of the switch is negative, zero or greater than the number of labels

in the switch list, then error message number four is displayed and no further

statements of the program are obeyed. If this is expected to occur, the goto

statement should be turned into a suitable conditional statement. For example:

goto ss [i];

where the switch list of ss has three elements, would become

if 0 and i<4 then goto ss [i];

This has the effect specified in the Revised Algol Report.

9

(Issue 4)

900

2s 1, 2

1.2.1.2 Type of Arithmetic Expressions.

If i, j,k stand here for integer variables and

a,b, c stand for real variables then:-

(1)

(2)

(3)

(4)

(5)

(6)

i+j#ais real.

i + (if j<k then 1 else b) is real since the else part

produces a real result. Consequently the then part

must also produce a real result, and the expression

as a whole is real.

its jta; j is converted to type real since a is real

and then the sum (j+a) is converted to integer.

i:= a[jtb]; jis converted to real since b is real,

but then (j+b) is converted to integer because it is a

subscript.

for list elements are converted to the same type as

the controlled variable.

Actual parameters are converted if necessary.

If the type of an arithmetic expression

depends upon the evaluation of an expression or upon the type or value

of an actual parameter then it is taken to be real, e.g. the result of

exponentiation is always real even where both arguments are integer.

No accuracy is lost as a result of this.

Note: it3, it(3) and it(+3) are however of type integer as a

special exception, but i (-3) is real.

1.2.1.3 for statements.

The controlled variable in a for clause can

only be a variable identifier, It may not be subscripted.

1.2.1.4 own declarations.

own declarations are not permitted.

1, 2.1.5 Specification of Parameters.

All formal parameters of a procedure

must be specified in the head of the procedure.

10

(Issue 2)

1.2.1.6 Recursive Procedures.

No recursive procedures are allowed.

900

2.1.2

1.2.1.7 Parameters.

An actual parameter called by name must be an

identifier or a string, and must be of the same type as the corresponding

formal parameter. The identifier may be the name of one of the following

simple variable

array

label

switch

procedure

string

If a formal parameter is called by name, the

corresponding actual parameter must be the name of a variable of the same

type as the formal parameter. Unsigned real and integer constants may however be

substituted for real and integer variables, respectively.

1.2.1.8 Type Procedures.

A call of a type procedure can only occur in

an expression; it cannot stand alone as a procedure statement.

1.2.1.9 Sequence of Declarations.

Declarations in a block head may occur in any

order provided that no entity is referred to before the declaration of its

identifier occurs in the text of the program.

1.2.1.10 Length of Identifiers.

Only the first six characters are significant in

an identifier; subsequent characters are ignored.

1.2. 1.11 Reserved Identifiers.

The identifiers checkr, checki, checkb and

checks are reserved for special purposes and may not be used in any other

“way.

1,2.1.12 Limits

(1) The number of parameters of a procedure or

dimensions in an array may not exceed 14.

(2) There can be up to 63 array names in an array

segment.

(3) There can be up to 120 characters in an input

line of text.

11

(Issue 3)

900
2.1.2

1.2.2 Programming Notes.

1, 2.2. 1 Range and Precision of Numbers

In all cases where an operation is defined as

having a result of type integer, this result must be in the range

-131,072 to +131, 071

If an integer exceeds these limits the program

stops and error message number three is displayed.

In an arithmetic expression a constant is

treated as a positive number with an associated sign. Thus in the example:

begin integer i;

i:= - 131072;

integer overflow results at translation time.

In all cases where an operation is defined as

having a result of type real, this result must be in the range

«1% 2" to (1-2-*7) «2°

i. Ge

-9 x 10% to +9 x 107° approximately.

Zero is represented by 0 x 2°.

If a real number exceeds this limit during

the running of a program the computer stops and error message number

nine is displayed.

During translation, a real constant that is

too large is replaced by the largest real constant

(1- 2727) x 263

Where any operation (including reading and

printing) is defined as having a result of type real, this result may be

-innaccurate by up to one part in 10%. It is not recommended to expect

an accuracy greater than seven significant decimal digits in testing

convergence of a numerical process.

12

(Issue 2)

900
2.1.2

1, 2.2.2 Sequence of Operations,

The order in which operations are performed

within an arithmetic expression is undefined except insofar as it is determined

by the rules of precedence:

(1) Exponentiation.

(2) Multiplication and Division.

(3) Addition and Subtraction.

Thus in

a:= bte+d;

the order of evaluation of b, c and d is undefined so that, if one of them is

a type procedure which affects the value of one of the others (a "sneaky"

procedure), the value of a will be undefined. If it is important that b, c

and d are evaluated in that order, they should be converted into expressions

by the use of brackets:

at= (b) + (c) + (d)3

Similarly, if it is important that the two additions are performed in the

order shown, the expression should be written:

a:= (btc) +d;

If a, b and c are real and are of widely differing magnitudes, then (atb) + ¢

may not be equal to a+(b+tc).

1.2.2.3 Boolean Expressions.

In the evaluation of boolean expression, every

term is evaluated. Thus in the expression

a:= bor cord;

even if b is found to be true, and thus the value of the expression determined,

c and d are nevertheless still evaluated. Hence any side effects from c and

d always occur,

Remarks analogous to those of 1.2.2.2 apply to

the order of operations within a boolean expression.

13

(Issue 3)

900

2.1.2

1.2.2.4 Correspondence Between Formal and Actual Parameters

In most cases if the formal and actual parameters of

a procedure are of different type, conversion of the actual parameter

automatically takes place. However, in certain cases the correspondence

between formal and actual parameters must be exact. There are as follows: -

(1) Array Parameters

If a formal parameter of a procedure is specified to

be an array, the corresponding actual parameter must in all cases be of the

same type and have the same number of dimensions.

(2) Parameters Called by Name

If a formal parameter to a procedure is called by

name, the corresponding actual parameter must be an (unsubscripted) identifier

or string, or aconstant. The actual parameter must correspond exactly in

type and kind to the formal parameter. If the call by name formal parameter

has a value assigned to it within the procedure the actual parameter must be a

simple variable.

(3) Procedure Parameters

When a procedure has a parameter which is specified

as a procedure, the first occurrence of the formal parameter procedure within

the procedure body shows the number and type of its parameters.

All calls of the parameter procedure thereafter, within the procedure body,

must have parameters which correspond exactly in number and type.

For example:

procedure f (x); procedure x;

Begin real a,c; integer bs;

x(a, b);

x(c,d); comment NOT x(a,c) because the type ofc

js incorrect, or x(a) because number of

parameters is wrong;

end f;

If in the example above there had been x(a,c); then

error message one would have been given at translation.

In any call of f, the actual pr ocedure used to replace

x must have parameters which correspond in number and type to those used in

the body of f. The parameters of this procedure must be called by name. If

these rules are not obeyed an error will be given at run time.

14

(Issue 4)

900

Je: ke 2

If the formal procedure x was a type procedure, this

must be declared in the heading of f, e.g.-:

procedure f(x); real procedure x;

a:= x(a);

The restriction on call by value parameters may be

evaded by use of a local variable in the parameter procedure.

e.g. procedure A(X); value X; integer X;

begin “8

may be replaced by

procedure A(Y); integer Y;

begin integer X;

X:=Y;

It should be noted that with the exception of instring

and outstring the standard procedures of 903 Algol have parameters called by

value.

1.2.2.5 goto if

The destination of a goto statement must not be

conditional, e.g. the construction

goto if A then L1 else L2;

is not allowed. It may be replaced by

if A then goto L1 else goto L2.

15

(Issue 4)

900
2.1.2

Chapter) 2: INPUT AND OUTPUT

2.1 INTRODUCTION.

The Revised Algol Report does not specify the mode in

which statements causing data to be input and results output are to be

written, The mechanism of read and print statements used in other Elliott

Algol implementations has been adapted to 903 Algol. Programmers who

prefer to use read and print procedures may readily declare such procedures

with or without parameters and, if with parameters, with the number and

type of parameters with which they are familiar.

201s. Print and Read Statements.

Two types of statement are introduced, the

print statement and the read statement. The syntax of these statements

is very simple, since they consist only of the words print and read,

followed by a list of operands, the items of the list being separated by

commas, €. 2.

read x, y, b(j];

print x2, x*y, z, cos(x/q)-bLj]:

The effect of a read statement is to cause

one or more numbers to be read from the paper tape reader and assigned

in the sequence read to the variables specified in the list. The effect of

a print statement is to punch the values of the arithmetic expressions

occurring in the list.

Qe lke 2 Structure of Read and Print Lists.

The elements of a read or print list may be

arithmetic variables or procedures. A print list may also contain

arithmetic expressions and strings. These elements are scanned in the

sequence in which they are written, with the following effect.

16
(Issue 2)

900

2;1.2

ITEM EFFECT IN A READ

LIST

EFFECT IN A PRINT

LIST

arithmetic variable

(can be subscripted)

number

expression

non type procedure

arithmetic

procedure (inside
the body of the

procedure)

arithmetic

procedure

(not inside its own
body)

array name

Boolean variable

Boolean procedure

string

A number is read

from the paper tape

reader and its value

is assigned to the

named variable

NOT PERMITTED

NOT PERMITTED

The procedure body

is executed

(The procedure

name on its own)
As for an arith-

metic variable

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED

The value of the

variable is output

on the current

device

As for arithmetic
variable

The procedure body

is executed

NOT PERMITTED

The procedure body

is executed and the

value of the
procedure is printed

on the current output

device.

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED

The string is

printed on the
current output

device.

2.1.3 Input Data Tape.

Numbers to be read by the computer should

conform to the ALGOL definition of a number, and each number must be

followed by some character other than a digit, a decimal point or subscript

ten. This terminal character may be followed by any sequence ‘of characters

excluding the digits 0 to 9 and the characters . lo4-, The sequence may be

of any length, its only function is to separate the numbers on the data tape,

and it is otherwise completely ignored. Note that spaces may not be used

in the middle of numbers.

17

(Issue 2)

900
2.1.2

Blank tapes and erase are ignored under all

circumstances. Halt causes the computer to wait.

The character ’ is not permitted on a data

tape, except in connection with the "instring" facility.

The example data tape

ITEM 176329
197 FT 7 INS
G=1, 276, 9-11
7, 3924 9-4
710623 1. 49700

is read as a succession of numbers

176329 (too large for integer)

197
7

1. 276, 9-11
7. 3924 9-4
710623 (too large for integer)

1. 49700

2.1.4 Presumed Settings.

The print and read statements of the

simple type explained above are executed under the control of the

presumed settings.

Methods of changing the settings and

obtaining varied and more sophisticated effects of format control are

described in 2, 2 of this chapter.

Numbers printed under the control of

the presumed settings appear on separate lines. In the case of integers,

up to six digits are printed with leading zeros replaced by spaces, and,

in the case of a negative number, the sign is floated i.e. moved along

so that it immediately precedes the most significant digit. In the case

of real numbers of magnitude less than 100, 000, 000 cight digits are

printed preceded if necessary by a minus sign. Larger numbers are

printed with an exponent part and only four significant digits.

Examples of printing under presumed settings:

Integers Real Numbers

9 -9e@BOG0O0

-127 1273661

- 125800 -2396123
°BDOGOOO

-1¢36nt12

18

(Issue 2)

900
Zs lee

2.1.5 Output of Text.

In order to output headings and other

messages, the characters which comprise the message should be enclosed

within string quotes and included as an item of a print statement; these

items are output in the sequence in which they appear.

Examples P

print ‘ height weight speed * ;

print f, ‘ft*,i, “ins ;

To output carriage returns, line feeds,

spaces, run-out or the symbols “and *, an inner string should be used which

consists of certain special interpreted characters enclosed by a further pair

of string quotes (’and*),

These characters may appear inside single

string quotes amongst text which is itself enclosed in string quotes. The

meanings of the special characters are given in the following table:

new line

space

runout

quote ¢
unquote*
halt

If any of these characters is followed by an

unsigned integer, the effect is the same as writing the character the

specified number of times.

r
e
o
m
g
e
o
 >

To facilitate the production of special effects

the character b followed by an unsigned integer may be used in an inner

string. The effect is to output the 8-bit character with the indicated binary

value. (In calculating the desired value the parity bit (value 128) must be

explicitly included if it is required), There is no automatic repetition

facility in this case.

Spaces and new lines may also occur within

a single pair of string quotes, and they are reproduced in the same way as

other characters; care must be taken to ensure that only those characters

required are quoted.

Examples

print” g4* chapter’, n,“ £28 5S;

print”’4‘height ‘s12* weight’s £2° speed ;
for i:=1 step 1 until 60 do print“b0;

print “s* height weight speed’;

19
(Issue 4)

900

2.1.2

Text is not preceded by a change to a new

line and, therefore, is printed on the same line as the last number. A

change to a new line may be specified as part of the text.

‘ The third example has the same effect as

print “760°; and the second example has the same effect as the fourth.

2.2 SETTING PROCEDURES

The presumed settings are adequate for inexperienced

programmers, for program testing and low volume output. In many

applications, however, the programmer will wish to use all available

input and output devices and to exercise control of output format, For

these purposes a number of procedures (setting procedures) are provided.

A setting procedure statement normally occurs in the

list of a print or read statement, separated in the normal way by commas

from the other operands, All numbers and text in a list subsequent to a

setting procedure will come under the control of the settings specified.

Any number occurring previously in the list or in the lists of subsequent

print statements is unaffected. Thus, operations in a list previous toa

setting procedure statement are not affected by it.

A setting procedure statement may also occur as a

separate statement of the program. In this case, once it is obeyed, it

influences all subsequent printing until altered by a contradictory

setting procedure statement. Such alteration may occur locally inside

a print statement or globally as a separate statement of the program,

Where a parameter of a setting procedure is of

type integer, the actual parameter may be an expression, allowing the

format of results to be determined dynamically.

2.261 Device Setting Procedures.

In order to use input and output devices

other than the paper tape punch and reader, it is only necessary to

specify the device required in the list, prior to the operands concerned,

This is done by calling the standard procedures reader(I) and punch (J).

The available devices are:

reader (1) The paper tape reader

reader (3) The on-line teleprinter

punch (1) The paper tape punch

punch (3) The on-line teleprinter

For other devices see Appendix 3.

Example

print x, punch(3), °“4* feed tape*, N;

20

(Issue 4)

900
2.1.2

will cause the value of x to be printed on the punch (the presumed setting),

and the message “feed tape’ followed by the value of n to be displayed on

the teleprinter for the attention of the operator.

2.2.2 Prefix Setting Procedures.

The procedure sameline is used to print

several numbers on one line. It suppresses the new line sequence which

is normally output before each number.

The statement

. : 044

print t, ‘tons*, sameline, c, “cwt*® ,1, “Ib ;

causes the value of t to be printed on a new line (the presumed setting),

followed by the rest of the numbers and text on the same line e. g.

17 TONS 12 CWT 19 LB

If all the numbers to be printed are to be

preceded by the same character or characters, the procedure

prefix (%...48°)

should be used. This causes the text displayed between ‘and* to be printed

(in the place of new line) before every number, The procedures prefix

and sameline are mutually exclusive.

For example, to print five numbers on a

line separated by a comma and two spaces, write the statement:

print a, prefix(’,’ ss‘), b,c, d, e3

2,25 3 Format Setting Procedures.

The following procedures are available to

change the number of digits printed and the style in which real numbers

are output.

Procedure Effect

digits (n) Print integers with n digits (1<n<12)

freepoint(n) Print real numbers with n digits (1<n<8)

and a decimal point in the appropriate place.

scaled(n) Print real numbers with 1 digit before the decimal

point and (n- 1)digits (2<n<8) after it and an exponent

indicating the power of ten by which the printed number

is to be multiplied.

aligned(m, n) Print real numbers with m digits before the decimal

point and n digits after it (1<m+n<15)

21

(Issue 3)

900
2 le2

Numbers are preceded by a space or minus

sign as appropriate. The formats freepoint, scaled and aligned are

mutually exclusive.

If a number is too large to be printed under

the current format setting the effect described in Paragraph 2. 2.4 below

occurs.

Examples

print i, digits(4), j,k, 1s
could produce the output

-213

- 1024
362
-7

print x, prefix(’, ’ s2™), scaled(4), x, aligned(3, 4), x, freepoint(4), x;

would cause the following sample output if it were to be obeyed

repeatedly for different values of X .

-102345685 -1e235etOOs -102346s <-16235

123-4568» 1¢235n+B2Qs 123¢4568>5 12365

°@O12346»s 16235n-G3>s @-OO12>5 °0G12

2.2.4 Alarm Printing.

If an attempt is made to print a number

which is too large for the style of printing called for, e.g. to print

289. 2 in the aligned (2, 4) format, or print 12347 in the digits(4) format,

then "alarm printing" occurs in such a way that the layout of the printed

page is undisturbed. Provided that the total number, N, of characters

called for is greater than six, the number is printed in scaled (N- 6)

format; if N<6, the letter H and a halt code are printed preceded by

(N- 1) spaces.

An attempt to print a real number which

is not in standard floating point form, causes error message number

seven to be displayed and *** to be output on the current device.

ae

(Issue 2)

900
2s; dae

2-265 Parameters out of Range.

If the parameters of a format setting procedure are

outside their permitted range, a return to presumed settings occurs as follows

Procedure Called Permitted Range of ; Presumed Setting

Parameters

digits(e) l<e<12 digits(6)

freepoint 1<e<8 freepoint(7)

scaled(e) 2<e<8 freepoint(7)

aligned(e, f) l<etf<15 freepoint(7)

reader(e) e=1 or 3 reader(1)

punch(e) e=l, 3 or 4 punch(1)

2.2.6 Input and Output of Strings.

Strings may be read in as data and printed out again

by using the procedures

instring(a,m)
outstring(a,m)

where a is a one-dimensional integer array and m is an integer variable.

(Neither a subscripted variable nor a constant may be substituted for m,

which is called by name and to which a value is assigned by the procedures.)

The effect of instring is to search input characters on

the current device , searching for a ’. If a numeric character is encountered

‘during this search, error message number fourteen is displayed. The string

that starts with the “ is stored, packed three characters to a word in

locations afm], a[m+1l].... When the which brackets with the original ‘is

encountered it is stored, input stops, and the variable m is set to the index of

the next available element of a. Thus, on repeated execution of the procedure,

m is automatically set in such a way that strings cannot overwrite each other.

The devices used for input by instring or output by

outstring are those specified 'globally', that is by the last call of setting

procedures reader(I) or punch(J) occurring outside a read or print list. This

applies even if the procedures instring or outstring are called from within a

read or print list, which differs from the effect on the 803, 503 and 4100.

Setting procedures inside a print list have no effect on instring or outstring.

The effect of outstring is to output a string which has

previously been input by the instring facility. The integer variable m indicates

the index of the first of the elements of a which contain the string, and the

procedure will set m to the index of the first element containing the next string.

Thus, on repeated execution of the procedure, successive strings stored in the

array are output in succession. Inner strings are interpreted in the same way

as that specified for strings occurring in print statements.

a3

(Issue 4)

900
2a lad

If the specified array is not one-dimensional and

integer, or if the initial or final values of the subscripting variable are out of

range, then error message number 23 is displayed. If an illegal character

is found in an inner string, error number 6 is displayed when outstring is

obeyed.

The array a should be sufficiently large to contain

all the strings read. A string of n characters, where n includes the outer-

most string quote signs and every character between them,will occupy

(n+2) div 3 locations.

262e¥ Procedures in Read and Print Lists

The body of a procedure occurring in a print list

may contain read and print lists. On reverting to the original list the

current format is the one in force at the end of the last read or print executed

within the procedure body. This differs from the effect on the 803, 503

and 4100. :

24

(Issue 4)

900
2ale2

Chapter 3: STANDARD PROCEDURES

3.1 INTRODUCTION

The procedures described in this chapter are available

without specific declaration. They may be thought of as declared in an outer

block in which the program being run is embedded.

3.2 ALGOL STANDARD FUNCTIONS

The function procedures listed in 3.2.4 of the Algol 60 Report

are available without specific declaration. They all have their argument

(which is of type real) called by value.

3.21 real Procedures

abs(E) the modulus of the value of the expression E

sqrt(E) the square root of the value of E (0<E)
sin(E) the sine of the value of E(E <2'®)_
cos(E) the cosine of the value of E (E <2}®)
arctan(E) the principal value, in radians, of the arctangent

of the value of E

1n(E) the natural logarithm of the value of E (0<E)

exp(E) e™

The argument of 'cos' and 'sin' is in radians, the

limit on its value is imposed to ensure that it has enough significant figures,

after multiples of 2m have been removed, for the evaluation of the functions

to be meaningful.

3.2.2 integer procedure sign (E)

This procedure takes the values:

+1 if E>0

+0 if E=0

-1 if E<0o

3.2.3 entier (F)

The transfer function entier is available without

specific declaration. It is an integer function with a real argument called

by value. Its value is the largest integer not greater than the value of E.

It should be used with care because of the finite accuracy of real numbers:

e.g. entier (1.9999999) = 1
entier (-1.000000001) = 2

25

(Issue 4)

900

2.1.2

3.3. CHECKING FUNCTIONS

The standard checking functions provide the programmer

with a means of optional printout of intermediate results during the course

of a calculation.

There are three such functions

checkr for real argument

checki for integer argument

checkb for Boolean argument

and they are written in the program as functions of a single parameter

which is called by value.

e.g. at=checkr(b+2%#c)+1. 5;

If the program is translated in the normal mode the

checking functions are ignored - that is to say the statement is treated

exactly as if it were

ats(b+2%c) + 1.5;

If the program is translated in checking mode then

an extra order is compiled so that the value of the argument is output.

Thus b+2*c would be printed.

In the case of Boolean checking the output is one of

the words true or false. In all cases check output is preceded by newline,

asterisk.

The checking functions may be nested, thus it is

possible to write

a= b+checkr(m|[checki(i+3)]);

in which case the value of (i+3) would be output before the value of

m[it3].

If two or more non-nested calls of the checking

functions occur in the same expression, then the order of evaluation

of the terms comprising the expression may differ according as itis

translated with or without checks. (See Paragraphs 1, 2.2.2 and 1. 2. 2, 3.

If checkr is used with an integer argument or checki

with a real argument, then type conversion will occur when the program

is translated with checks, but not when it is translated normally. This

can lead to several unintended and unexpected effects.

26

(Issue 3)

900

2a ls 2s

In addition to the three checking functions there is

the checking procedure

checks

whose parameter is a string not containing a semi-colon or closing round

bracket ')'. It can conveniently be used to provide a form of trace of the

progress of a calculation, or to identify the output of the checking functions.

A typical call of this procedure would be

checks(“stage 1 complete *);

3.4 MACHINE CODE.

Certain operations can be performed much faster when

expressed in 903 machine code than when expressed in Algol. This is because

the Algol translator must cater for all possibilities, but the programmer

writing in machine code need only consider his special case.

It is particularly effective in matrix work.

All machine code must be in the form of special

procedures and communication with Algol is via the parameters of these

procedures.

The procedure is written in two parts, an Algol declaration

and a code body. The declaration is included in the Algol text. The procedure

body is written in 903 SIR code and translated separately by the SIR assembler

(Volume 2.1.1).

3.4.1 Declaration in Algol text.

The declaration of a code procedure is similar

to the head of a normal procedure declaration, but it is not followed by a

procedure body and it must be enclosed within the special brackets

code and algol;

For example

code

integer procedure SUM(A, B);
value A; integer A, B;

algol ;

Note the semi-colon after algol. Subsequent calls are as for ordinary

procedures although they are translated differently.

The standard procedures on the library tape

behave as though a declaration in this form occurred in a block surrounding

the program.

_ SDRN/ALGOL/12
27

900

Zs ls 2s

3.4. 2 As written in SIR

The machine code is written inSIR code and

converted by the SIR assembler toa relocatable binary tape which can be linked

tothe Algolinalternative ways; either it is added as an extension to the library

procedures or it can be fed in just before execution as a separate tape.

It may be necessary to refer to a number of

fixed locations which hold a 16 bit address. These locations are:

Absolute Address Contents Explanation

132 QACODL Algol Constants Object Data Load.

This points to the start of an area

containing constants, switches and

labels,

A goto switch expression or label

parameter requires reference to
132,

137 EP Entry Pointer. This points to a

group of locations holding the status

of the current block.

A goto switch expression or label

parameter requires reference to
137.

138 FP Formal Pointer, Most machine

coded procedures need to refer to

138 (see below).

140 PBA Primitive Base Address. This

points to a list of basic interpreter

subroutines. i

A machine coded procedure needs

to refer tol40only if it makes use

of interpreter subroutines.

180 Workspace Pointer. Reference to

180isonly needed when interpreter

subroutines are used.

28
SDRN/ALGOL/12

900

2.1.2.

3.4.2.1 Scalar Parameters.

The table below shows how the contents of

138,the Formal Pointer FP, are used to access scalar parameters. Reference

to a parameter numbered n is via location 3n+(content of FP) and sometimes via

the next two locations as well t:-

Type of mode of Contents of

Parameter call sntFP 3ntFPt+1 3nt+FP +2
‘—

integer or by name address undefined undefined

Boolean by value value undefined undefined

real by name address* See Note 1 undefined

by value <------ mantissa------- > exponent
4

A boolean variable has the same form as an

integer variable and the two possible values are

true is held as +1

false is held as zero

3,4, 2.2 Result of a Type Procedure.

The Formal Pointer points to the result.

Type of Result Contents of

FP] FP +1 | FP +2

non-type procedure (no result)

integer or boolean

procedure result undefined undefined

real procedure <------ mantissa tatatal > exponent

Example:-

(1) A procedure declaration in Algol

integer procedure SUM(A, B);

value A; integer A, B;

SUM:= A+B;

t+ The value of a type procedure is assigned to parameter 0.

% But the sign bit is set to l.

Note 1 This location holds an indicator word. If the word is positive the

real number is stored in packed format, if negative it is in

unpacked format (see 3. 4. 9).

SDRN/ALGOL/12 29

900

2.1.2.

(2) The same procedure declared, if its body is to be in code.

code

integer procedure SUM(A, B);

value A; integer A, B;

algol;

(3) The code body, to be written separately from the Algol text.

#40
[SUM]
SUM /14 2 (TWO PARAMETERS)

+0
(¢) 138

/0 6 (LOAD SECOND PARAMETER)
/4 0 (CALLED BY NAME)
0 138 (ADD FIRST PARAMETER)
/1 3 (CALLED BY VALUE)
/5 0 (PUT RESULT ON STACK)

0 SUM#1

/8 1

%

For a typical entry to this subroutine the content

of location138might be +5500. Then locations 5500 onwards might contain:

5500 +Xl1 (Undefined, result space for function)
+: 2

+ X3

5503 +10 (Value of A)
+X4 (Undefined)
+ X5

5506 + 4600(Address of B)

and location 4600 might hold +20, the value of B.

30
SDRN/ALGOL/12

3, 4. 3

procedures written in SIR.

(1)

(2)

(3)

900

Dis Weis

Rules for SIR Blocks.

The following rules apply to machine code

Each procedure must have *+0 before the

first global list. No other options can be

used anywhere on the tape.

There must be one global label and this is the

name under which the procedure is known. The

procedure must be one and only one block.

The procedure name must differ from that of

any other procedure on the library tape.

Furthermore if it begins with Q its second

character must be the letter U.

A list of names present on the standard

library tape is given in Paragraph 3. 5

below.

The global label must appear on the left

in the first location of the procedure which

must contain the word /14 n where there are

n parameters to the procedure.

The rest of the machine code follows as an

ordinary subroutine expecting to have its link

stored in the second location and to be entered

at the third location.

The block is terminated by the % character.

The following SIR facilities are available.

Constants

Integer e.g. -79

Fixed Point fraction e.g. +. 317

Octal e.g. &770123

Alphanumeric e.g. £A23

Addresses

Absolute e.g. 132

Block relative e.g. 53

SIR relative e.g. 3-3

Identified e.g. LIST+95
Literal i.e. any constant or =

followed by an instruction with

an absolute address.

3 Skips e.g. >+5

4 Comments e.g. (this is a comment)

B
e

w
W
D
d

N
A
N
N
A
N
A
N
A
N
N
A
N
A
N
N
A

a
w
n

7.
Ls

Other SIR facilities are not available.

SDRN/ALGOL/12
31

900
Zod ss

(8) The effect of altering the contents of an absolute

location, other than locations180 to 203 (see below),
is undefined. In particular the contents of locations

132, 137, 138 and 140, which are frequently referred

to within CODE bodies, must not be altered.

(9) The length of each machine code block must not

exceed 900 words.

3.4.4 Array parameters.

When an array parameter is specified for a code (SIR)

procedure it is necessary to hand over details of the array and store layout.

Three distinct areas of store are specified; a pair of pointer locations, the

array map and the array itself. The array map is a block of store holding

information on the size of array, subscripts and bounds. The actual array

is a continuous block of store, with either one word for each element of an

integer or boolean array, or two words for each element of a real array.

The following examples are used to illustrate the

description:

integer array A[1:100];

array B[1:3, 2:3];

The elements of a multi-dimensioned array are stored in order such that the

first subscript varies most rapidly; e.g. array B is in order:

B[1,2], Bl2,2], BC3,2], Bl1,3], BL2,3], B[3,3].

If the nth parameter is an array, on entry to the code procedure location 3n +

(content of FP) will always hold an address. This address will point to the

first of a pair of 'pointers'. The first pointer location holds the address of

the actual array blockin store. If the array is real then bit 18 of the first

pointer location will be set to one (i.e. the location will be negative). The

second pointer location holds the address of the array map.

The array map is 2d +2 words long, where d is the

number of dimensions in the array. It has the following form:

General form Array J Aytay. B.
Number of dimensions (d) +1. +2

Total size +100 +12

Offset -1 -14

Lowbound 1 (L,) +1 +1

Constant 1 (C ie +6

Lowbound 2 (L5) +2

Constant 2 (C,)
Lowbound 3 (L3)
etc.

32 SDRN/ALGOL/12

900

Dee Lads

Total size is the total number of words in the actual

array. Offset, C,,Cg, etc. are constants used in array subscripting. l,,

Lg,Lg etc. are the value of the lower bounds for the first, second, third

subscripts. This information in the array map is not necessary if the

elements of the array are to be accessed in sequence, without checks on

subscripts.

The store address of element X[i, j, k,] is

calculated from:

(Address of array) + Offset +

£*¥it Cy *jt Cg * Kt... eee,

Where F = 1 for integer and boolean arrays and

F 2 for real arrays

If the array parameter is called by value in the

procedure specification there is no difference in the information handed to the

code procedure. If the effect of a call by value is required the code procedure

itself should make a separate copy of the array, and operate on the copy.

Examples

Code procedure PRA has two parameters; the first

is an integer array, the second is a real array.

On entry to PRA, the following values might be set up:

Location Contents Meaning

138 +6000 FP

6003 +4800 First parameter (address)

6006 +4790 Second parameter (address)

4800 +5004 Address of actual array A

4801 +5000 Address of array map for A

4790 /0 5110 Address of actual array B
(real)

4791 +5104 Address of array map for B

5004 +12345 First element of A

5110 0.5 First element of B

5111 +63 (0.25 in 2 word floating point)

SDRN/ALGOL/12 33

900
ak v2

Program

To access first element of B: To get Total size of A:

0 138 0 138
/0 6 /O 3
/4 0 /O 1

5 ADDR /4 1

0 ADDR (Total size in A-register)
/4 0

5 WwW (value of first element in W, W+1)
/4 1

5 Wl (To unpack to 3 word format,
see 3.4.9.1)

To get address of element B[I, J];

0 138

/o 6
/0 1 (address of map)
4 J

/12 4 (J * Cl)
14 17 (Integer multiplication)

1 I

1 1 (Add 2 * 1)
/l 2 (Add Offset)

9 FAIL (subscript out of range)
/2 1 (total size - relative address)

9 FAIL

7 FAIL

/2 1 (Restore relative address)
0 138

/0 6
/1 0 (Add address of array)

5 ADDR

The 5 instructions from 9 FAIL to the second /2 1

inclusive can be omitted if subscript checks are not required.

3.4.6 Label Parameters

Exit from a machine code procedure to a label

parameter is illustrated by the following program. An absolute address in

3n + FP is converted into a relative address, and function bits added to form

an instruction to be interpreted as 'GOTO" by the Interpreter. The address

of the location holding this instruction is placed in the stack so that control

is transferred to the GOTO function when the normal exit is taken from the

code procedure.

34 SDRN/ALGOL/12

900
Dre Leeds

To exit from the procedure PROC to a label which

is the second parameter, the following code may be used:

4 132

0 138

/2 6 (/2 n*3 for the nth parameter)

6 +8191
Ll 1 =100

5 LIVE (Store GOTO instruction)
4 ADLIVE :

0 137

/5 1

0 PROC+1 (Normal Exit)
/8 1

ADLIVE 0 LIVE

LIVE +0

3.4.6 Switch Parameters

Exit from a machine code procedure to a switch

parameter is illustrated by the following program.

The procedure PROC (in the example in 3.4. 5) has

a switch as its third parameter. WN holds the required switch subscript value.

The first 8 instructions only check the subscript and they may be omitted:

4 N

7 FAIL

9 FAIL (SUBSCRIPT TOO SMALL)

0 138

/0 6
4 N

/2 0

be. 9 FAIL (SUBSCRIPT TOO LARGE)

Should 4 132
/ > 0 138

a | /2 9
al N

al

asneeceer 6/3/202 _
8 Ll (see example in 3.4.5)

SDRN/ALGOL/12 35

900

20h 2s

3.4.7 String Parameters,

Where the nth parameter is a string

(3n + content of FP) will hold an address, pointing to the first word of the

string. A string is stored in SIR internal code with its opening and closing

string quotes, left to right, left justified and space filled at the right. Thus

CAT is held as:

Word 1] &£°CA (&074341 octal)
Word2 £T*© (&644000 octal)

3.4.8 Use of Interpreter Subroutines.

Procedures written in machine code may

use subroutines in the interpreter. The subroutines are numbered and

those which may be used are as follows:-

28 Rl:=R1 ¢ 12

31 Rl := R1 + R2

33 R1:= R1- R2

35 R1:=R1 x R2

36 R1 := 11/12

37 R1 := R1/R2

38 Il := 1112

39 R1 :=I11tI2

40 R1:= RItR2

The user must place in location 180 the

address of the first location of his workspace. For example, suppose

that there are two real numbers, labelled Rl and R2, and that R1 is to

be replaced by R1-R2 then the following program does this:

™ 4 POINT
5 180
go 140

/0 33

/11 0

/8 1

POINT Oo 8 6RI

RI >+3
R2 >+3

36 SDRN/ALGOL/12

900
2.1.2

For integer operands, I] and 12, the labels

must be three locations apart as for Rl and R2,

3.4.9 Real Parameters

All real arithmetic in code procedures uses

the unpacked (3 word) format, with the fraction mantissa in the first two
words and the exponent in integer form in the third word.

However the elements of a real array and

real parameters called by name (with the exception in 3. 4.9.3) are stored

in the packed (2 word) format (described in Volume 2. 2. 8 Chapter 1. 2. 2).

3.4.9.1 Unpacking

The following program will unpack a real

number, given the address of the number in ADD, and leaving the result

in location W etc.

0 ADD
/4 0
5 W
/4 1
6 &377600
5 wl
/4 1
14°11
148181
5 wz

3.4.9.2 Packing

The following program will pack the real

number stored in locations 183, 184, 185 into the two words specified by an

address which must be set by the user into location 203, This address may

point to workspace in the code procedure, or an array element or real

variable.

0 174

/11 0

/8 24

Locations 183, 184, and 185 are left undefined. All interpreter subroutines

affect 183, 184 and 185, in particular the subroutines number 28, 31, 33,

35, 36, 37 and 40 (in 3.4.8) leave their real results in these locations,

as a side effect.

SDRN/ALGOL/12 37

900
2.1.2

3.4.9.3 real Parameters called by name

Real parameters called by name are stored in

packed form unless the actual parameter to the machine code procedure is

itself a formal parameter called by value. The location 3n + (contents of

FP) holds the address of the actual value with the sign bit set to one. The

location 3n + 1 + (contents of FP) is positive if the value is packed, and negative

if the value is unpacked.

3.4.9.4 Integer to real conversion

Conversion of an integer value to an unpacked real

value is achieved by means of the standardising subroutine, as in the

following example:

I (Store integer in floating-point form)
183.

+0

184

+17 (Integer is stored *2417)
185
150

/1l 0 (Convert to standard form)

/8 1

o
u
r
u
h
u
o
u
w

This leaves the real value im standardised floating-point (unpacked format) in

locations 183,184 and 185.

3.4.9.5 Real to integer conversion

Conversion of an unpacked real value to the

corresponding integer value may be achieved by the following subroutine entry:

0 157

/1l 0

8 158

This code will convert the real value in 183, 184 and

185 intoan integer value. The integer value is given in the A-register and

location183 onexit from the subroutine. Conversion gives the value:

entier (X+0. 5) where X is the real value, (i.e. rounding to the nearest

integral value). If the result is outside the range -131072 to +131071l,error

number 3 will be output, and the program will stop.

3.4.10 Use of interrupts in SIR code procedures

Algol programsare run on level 1, The user may

write his own code routine to drop to level 4, the base level, Levels 2 and 3

are then available for use by code routines. The S>registers.for levels 2 and

3 must be set to appropriate values, normally by means of a SIR code procedure

within Algol. Once the appropriate values have been set up, interrupts may be

used. The interrupt routine may be quite independent of the Algol, or it may be

used to control the Algol program. If completely independent of the Algol program,

38 SDRN/ALGOL/12

900

2.1.2.

it may be incorporated in the built in library and the level 2 and 3 S-registers

set up by making a keyboard entry to the address given in the store map.

The example below shows a procedure used to control an Algol program loop.

The procedure IFL2 is a boolean procedure entered repeatedly by an Algol

program. If the level 2 Manual interrupt button has been used it takes the

value true, otherwise it is false.

*0

C 1FL2]
IF L2 /14 0

+0

4 L2A

5 2 (Set level 2 S-register)
4 F

0 138

/5 0

4 +0

5 F

0 IFL2+1

/8 1

FF +0

L2A Oo L2 (Address of level 2 routine)

L2 5 A

3. Q
4 +1

5 F

0 Q (See note below)
14 if

4 A

15 7168

8 L2

A +0

Q +0
%

. Once IFL2 has been used for the first time, the

level 2 Manual button may be pressed. This causes an interrupt, and the

program sets F:=1 (Note that in this example it is not actually necessary to

store Q, since the interrupt program does not affect it). The next time IFL2

is used, it will take the value true. This might cause the Algol program to

break out of the main loop, to input a value from the on-line teleprinter, for

example:

"CODE" "BOOLEAN!" "PROCEDURE" IFL2;"ALGOL";

LOOP: CALC(A,B,X, Y); "PRINT" X;
“LF" IFL2 "OR" X<Y¥ "THEN" "GOTO" ENDL "ELSE" "GOTO" LOOP;

ENDL: "READ" READER(3), Y;

SDRN/ALGOL/12 39

900

Die sk Die

3.4.11 Loading Machine Coded Procedures

3.4.11.1 As an extension to the library

Copy the existing library tape up to but not including

the special terminating character (binary 01110000). Add a copy of the

relocatable binary version of the machine code procedure. See Paragraph 3.5.1

below for the structure of the library tape.

The procedure will, therefore, be copied on to the

end of any Algol program which required it. The declaration of the code

procedure must be in the outermost block of the Algol program if this method

is used.

This would be sensible for a well-tested machine

code procedure.

3.4.11.2 At Run Time

Several possibilities exist here depending on whether

the rest of the library is in the store or not.

(1) Library in the store already and part of it needed.

Read in the Algol by starting at 8 and then the

machine code by starting at 11.

(2) Library in the store already but not needed. Read

in the Algol by starting at 13 and then the machine

code by starting at 11.

(3) Library not in the store and part of it needed.

Establish the library in the store by starting at 12

and then proceed as described under (1).

3.5 THE LIBRARY

The standard library contains the following procedures:

arctan

cos
sin \ stored under library name QATRIG

sqrt

instring stored under library name QASTRI
outstring

lowbound

range

A reference to sqrt causes loading of the sqrt procedure, but

a reference to cos causes the procedures cos and sin to be loaded. The

mechanism which selects a portion of the library for copying to the end of the

Algol program works as follows:-

40 SDRN/ALGOL/12

900

Oe desi Oy

A complete procedure is read into store from the left hand

global name which starts it until the checksum which closes it; it is then

copied or rejected. If an end-of-library mark is read then the library scan

finishes.

3; bed Structure of the Library

Basically the library tape consists of a series of

independently assembled SIR blocks and is in relocatable binary format.

Each block begins with a left-hand global label and ends with a checksum.

Following the last block on the library tape is a

single character for halting the library scan. Between each block is a length

of blank tape.

3.5.2 Adding procedures to the library.

Providing that there is no name clash, the procedure

written in SIR code should be assembled with option +0 and the resulting

relocatable binary tape inserted by a copying process (see 3.4.11. 1). These

procedures must still be declared in the Algol text as described in 3.4. l.

The standard version of the library is "built-in"

to the Interpreter (Tape 2), The names in the standard library, with suitable

declarations, are built-in’to the Translator (Tape 1). New versions of the

Library may be'built-in”’as described in Chapter 5.5.

3; 53 3 Lowbound

This library procedure is used to determine the

lower subscript bound of a real array. Together with the procedure range

it enables matrix procedures to be written without requiring the bounds of

the array parameters to be handed over as extra parameters.

The implied declaration of lowbound is: -

integer procedure lowbound (A, n);

value n; array A; integer n;

Comment ‘A’may have any number of dimensions. The procedure takes the

value of the lowerbound of the nth bound-pair;

3.5.4 Range

The implied declaration of range is:

integer procedure range (A, n);

value n; array A; integer n;

Comment ‘A’may have any number of dimensions. The procedure takes

the value of the range of the nth bound-pair, i.e. (Upper bound-lower bound

+1) e.g. with array A [1:8, - 1:3] range (A, 2) will take value +5;

SDRN/ALGOL/12 41

900
2: le 2s

3.6 Control Procedures

These are parameterless procedures which help to control

the running of the program.

3.6.1 STOP

This procedure causes an immediate ending of the

program, as when the final end is reached. FINISH is displayed and the

standard trailer output.

3.6.2 WAIT

This procedure causes the program to enter a

Wait stop. The program may be continued by entry at 9. It does not affect

the calculation in any other way. Operation is frequently simplified if

appropriate instructions are displayed immediately before wait is called, e.g.

print punch(3), “L* LOAD NEXT DATA TAPE’; wait;

3.7 Procedures for Character Input

There are three procedures on the 900 ALGOL Tape 3

Library tape which are concerned with input of individual characters. These

procedures are not "built-in" to the standard ALGOL Tape 2, and therefore

a Library scan is required to include them. The procedures are Advance,

Buffer and Decode, described below by their implicit declarations, (They

do not have to be declared as such in the Algol Program.)

1) ADVANCE

Code procedure ADVANCE (I); Value I; Integer I;

ALGOL;

Comment This procedure reads one character from device I into a buffer.

In the standard system, devices 1 (paper tape input) and 3 (teleprinter input)

are allowed. This buffer is used by the Buffer and Decode procedures; also

by read statements. ;

2) DECODE

Code integer procedure DECODE (I); Value I;

integer I; ALGOL;

Comment This procedure examines the character buffer input device I, and

delivers as an integer result, the 900 internal character code value inthe

range 0 to 63, See the Facts Card or 900 SIR manual (Volume 2. 1.1) for

details of internal code values. DECODE does not itself cause input of a

character, it must be preceded by an ADVANCE or a read. If a read or an

instring from the same input device follows, the first character processed will

42 SDRN/ALGOL/12

900
Zs ls 2s

be the character examined by DECODE (or BUFFER). If DECODE follows

a read or instring,the character examined will be the character which follows

the last digit or decimal point; or the character following close quote for an

instring:

3) BUFFER

Code boolean procedure BUFFER (I, S); Value I;

integerl; string S$; ALGOL;

Comment Procedure BUFFER takes the value true if the character represented

in string S is the character in the buffer for device I. Otherwise,it has value

false. The string corresponding to S must consist of three characters only;

the open quote, the character to be compared, and the close quote sign. It

must not contain inner string characters, so that BUFFER (1,77 L>>)

is not allowed, it must be written on two separate lines, as:

BUFFER (1,
’)

The rules mentioned under DECODE for use before

or after read or instring apply to BUFFER ;

Example of program using ADVANCE, BUFFER and

DECODE.

PROG;

integer array A { 1:100 J]; array B[1:100] ;

integer I, J, K, IDEV, CHAR; real X;

switch SS:=L1, L2, L3;

read READER(3), IDEV;

READER (IDEV); K:=1;

Li: ADVANCE (IDEV);

if BUFFER (IDEV, “**)

then STOP;

comment * marks the end of the data tape;

CHAR:=DECODE(IDEV);

if CHAR=13 or CHAR=14 or CHAR=11

or (CHAR>15 and CHAR< 26)

then goto L2; comment if -. + or digit;

SDRN/ALGOL/12
42a

900
2.1.2.

if CHAR=7 then goto L3; comment string quote;

L2: readI, B[I];

goto Ll;

L3; INSTRING (A, K);

goto Ll;

42b SDRN/ALGOL/12

900

Dee, dienes

Chapter 4: ERROR INDICATIONS

4,1 ERRORS DURING TRANSLATION OF PROGRAM

4.1.1 Run in Translation Mode (start at 8 or 12).

If an error is detected during translation,

a message is punched separated from the binary output by twenty blanks.

No further binary output occurs, but scanning of the input text continues

to check the remainder of the program for further errors.

The form of an error message is,

ERROR NO 28

LINE NO 6

— ANS:= 4 * A2;

The error number given in the message

refers to the table in 4.1.5, and the line number is the count of

lines on which printable material has occurred from the beginning of the

Algol text. The first line of the title counts as line number 1. The line

at which the error was discovered is displayed. The error will usually

be found in this or one of the immediately preceding lines. Certain

declaration errors, such as omitted or mis- spelled identifiers, will

however not be detected until the entity in question is referred to,

perhaps many pages later.

If an error occurs in a declaration then it

is likely that some spurious error messages will be produced later on.

Any error may give rise to further spurious error messages.

An illegal or odd parity is replaced

by the character ~; error 98 is given

but no arrow is printed underneath in

this special case. Thus several

spurious characters can be displayed.

4.1.2 Run in report Mode (start at 10).

The first output consists of a copy of the

first six letter of the title of the program and this is followed by

Error message, if any, as described above

Warning messages

Report messages

43

(Issue 4)

900

26 lg 2

4.1.2.1 Warning Messages

There are two sorts of warning message

which are

*WARNING Produced by end followed

LINE NO 25 by a comment containing

"END" X:=1; a delimiter.

and

*WARNING Produced by an identifier

SUM declared but not used.

It is to be noted that the second type of warning

message may be produced if a formal parameter is blocked by a later

declaration

e.g. real procedure P (a); real a;

begin integer a, bi
bs= a3

In this case the warning is given at the end of

the procedure body. This warning is not given for a switch identifier.

4.1.2.2 Report Messages.

The purpose of these is to help the user to

locate a fault at run time by giving him information about labels and

procedures.

When a label, a procedure declaration or an ''END"

is encountered a message is punched, with the respective forms:

L LOOP ADR 18 (position of label LOOP)

P CAT ADR 35 (position of procedure CAT (A,B,....))

E ADR 50 (position of any 'END"')

The address (ADR) is the object program address

(relative to its start).

At run time when an error occurs the

relative address is given, as is the address to which a return

is to be made after calling a procedure. lf therefore a parameter mis- match

is found at the entry to a procedure, the fault can be traced to the point of call.

44

(Issue 4)

900

2.1.2

If any error message has occurred then the

word FAIL is punched followed by a halt code, twenty blanks and a visible

X. This is followed by the standard trailer of 50 blanks, 6 erase signs,

100 blanks. Tape is read and ignored up to the next halt code.

4.1.3 Error During Library Scan.

If a library program exceeds the buffer

space during the library scan then the FAIL sequence is punched as above.

This can only happen if a library program written by a user is longer than

about 600 words, or more than about 50 declarations occur in the outermost

block of the program.

4.1.4 Undetected Errors.

4.1.4.1 Arithmetic and boolean expressions are

indistinguishable between if and then. For example

ifa +b then is not distinguished from

ifa+b #0 then

4.1.4.2 Actual parameters are checked against

formal ones at translation time except for parameters to formal procedures.

The check on these is deferred until run time.

4.1.4.3 A jump into a block is an error detected only

at run time.

4.1.5 Error Table at Translation Time.

1 read misplaced

2 print misplaced

3 Constant or expression in read list.

4 Wrong delimiter in switch declaration.

5 Illegal actual parameter

6 Too many parameters to a procedure.

7 Illegal number.

8 nteger number too big.

9 Two statements in the same block are

prefixed by the same label.

10 Identifier or constant not as expected.

il Letter, digit, "." or '"'\)" misused.

12 true or false follows an identifier or

constant.

13 comment does not follow '';'"' or begin

14 <reserved>

15 Unrecognised basic symbol.

16 No assignment to the procedure identifier

occurred within the body of a type procedure,

45

(Issue 4)

900
2.1.2

46

(Issue 4)

T?

18

19
20
21

22
ao

24

25

26
27
28

29
30

31

32

33

34

35
36
37
38

39
40
41
42

43
44
45

46

47
48
49
50
51
52
53
54

An identifier in the value or specification

part of a procedure is not a formal parameter.

Use of undeclared identifier, or label in an inner block.

Illegal symbol.

Non procedure identifier used as a statement.

‘:=!! omitted from for clause.

Illegal use of label name.

Inadmissible array declaration

<switch name> not an actual parameter nor

preceded by goto

Non type procedure as function designator.

switch misplaced.

Declaration without identifier.

"z=" preceded by a constant or used inside an

expression.

"3" in type or switch declaration or misused.

Adjacent delimiters inadmissible.

Constant before "':=" or '[", or constant or

name of a string in a read list.

Item other than a non-type procedure used as

a statement.

Identifier or constant follows a closing round

or square bracket.

Relation on each side of a simple arithmetic

expression.

Illegal statement, delimiter misused.

Declaration starts incorrectly.

Error between for and "35".

Missing array or switch name or "'['' misplaced.

3! misused in array declaration.

end misused.

Local identifier used in array bound.

goto follows an identifier or a constant.

Wrong for clause preceding do

for misused. :

Misused Boolean constant.

Assignment to procedure identifier outside

procedure body.

real integer or boolean misplaced.

Identifier declared twice in same block-head.

Blank parameter.

No begin at start of program.

Wrong number of subscripts or parameters.

"t=" appears in an actual parameter list.

Statement ends incorrectly.

Declaration follows statement.

55
56

57
58

59
60

61
62
63
64
65
66
67
68
69

70

val

72

t3

74

io)

76
a

78

79

80

81

82

83

84

85

86
87
88

89
90
91

92

900
Dro: died

':', go to or for used in expression.

Illegal p parameter comment or) precedes identifier.

Wrong use of delimiter.

Relational or logical operator used as an

arithmetic operator.

Illegal use of logical operator.

Omission or error precedes begin or begin

follows ''!:="

"("" misplaced or missing procedure name.

Function designator as designational expression.

Misplaced declarator.

Subscripted variable as statement.

Illegal specifier.

Misused comma or colon in an expression.

if misused.

if used in type declaration.

Corresponding if has been omitted or conditional

expression without an else

Corresponding then missing.

Illegal character in in inner string. (May be caused

by missing ‘ (close quote) in a previous string.)

array misplaced.

Left square bracket not preceded by an identifier.

Unmatched closing square brackets.

Upper bound missing in array declaration.

Illegal type declaration

Illegal array list.
Corresponding for missing.

A jump is made to a label declared, but not placed

in the block that ends here.

step until or while misused in for list element.

Misused "')'"' other than in expression.

")"" misplaced or unmatched.

Program too complex, i.e.. some statement is

too complicated.

Wrong delimiter after procedure statement.

Program too large, i.e. contains too many names,

labels, constants or switches.

Error before procedure.

Repeated formal parameter.

Wrong formal parameter delimiter.

<reserved>

Wrong delimiter in value or specification part.

Input buffer overflow, i.e. more than 120

characters in a line.

Formal parameter has not appeared in the

specification part.

47

(Issue 4)

900

2.1.2

48

(Issue 4)

Note:

93

94

96
96
97
98

99.

100

tol

102

103

104
105

106

107
108

109

110

LI1

112

(1)

(2)

(3)

Declaration terminated by end or containing

begin

A formal parameter which is a switch, string

or procedure is called by value.

Switch designator has more than one subscript

Wrong for clause.

then misused.

Illegal character or parity error. The character

is replaced by —in the displayed line, but t is

not printed beneath it.

Current use of identifier inconsistent with

previous uses.

Conditional expression needs parentheses.

Wrong delimiter after procedure identifier in

procedure declaration.

No "3!" between formal parameter part and

value or specification part.

Commas or colons wrong in array bounds.

div used with a real argument

Illegal parameter delimiter after a string.

Integer labels not allowed.

Recursive function calls not allowed.

An actual parameter which is a procedure has

one of its parameters called by value.

Constant should not be used in procedure

heading.

Wrong specification part.

Different number of parameters from previous

use of formal procedure or wrong number of

subscripts.

Mixed types in multiple assignment.

The following errors will cause an Algol program

tape to shoot through and unload the reader, instead

of stopping at the end;

No halt code at the end of a tape which is not the

last tape of the program

Insufficient end's to match all the begin's in the

program.

Missing * at the end of a string, causing the

program statements that follow to be treated as

part of the string.

900

201.2

The following errors will cause the end of an

Algol program to be found prematurely:

(1) Missing begin.

(2) end or the comment following end not followed

by end, else or a semicolon causing a begin to

be treated as comment. These errors lead to

a breakdown of the block structure of Algol

and will usually cause many error messages

to be displayed.

ERRORS DURING LOADING OF THE PROGRAM.

When the program is loaded certain errors are detected

by the loader and cause a message to be printed. These are:

FA

FD

FF

FC

FU

FE

} misread or mispunched tape.

implies that the library names are not an exclusive set

and that two library programs with the same name have

been copied onto the end of the Algol object program

tape. This error is also given if the user entitles his

program "COS" or some other library name and calls

for the same name in his Algol text.

The name printed beside FU is that of a missing

library function which should have been supplied during

the library scan part of translation. This would occur

if the name of an additional library procedure had

been mis- spelled in an Algol program,

The missing procedure may be read in at run-time.

indicates Store Full. The program is too large to be

loaded in its present form. If the program was loaded

by entry at 8 it should be re-translated in the library

mode (entry at 12) and the program loaded by entry at

13. If FE is given when the program is loaded by entry

at 13 the Algol text should be studied to see if the program

size can be reduced, or split into two parts.

The procedures in the standard Algol library are

arctan ©

cos

sin

sqrt

instring

outstring

lowbound

range 49

(Issue 4)

900

2.1.2

Many establishments will have special library tapes

containing additional procedures whose bodies are written in code. Programs

using such tapes must also avoid clashes of narne with any of these additional

procedures.

In addition to reporting errors the loader lists the

addresses of library labels and indicates the extent of store used by the

object program. For example, a program entitled FRED which requires

ARGCTAN and COS from the library causes a print out like this:

FRED 4000

QATRIG 4323

— re Shared library program.

SIN 4428

QACODL 4616 Start of object data load (constants etc)

QAVNDA 4650 Start of data area for scalars

FIRST NEXT

4000 4692

In this example the interpreter occupies locations 8- 3999,

the program occupies locations 4000-4691 and the dynamic workspace available

for evaluating expressions and entering procedures and for arrays, extends

from location 4692 to location 8179.

4.3 ERRORS DURING RUNNING OF THE PROGRAM.

When an error is detected at execution time, 20 rows of

blank tape are punched for each error and a report of the form.

ERROR NO ADR RET

T 36 20

is displayed.

A halt then occurs from which a restart from the point

reached is sometimes possible (see below) depending on which error has

occurred. Inall cases a restart from the beginning of execution is possible.

Continuing the example of sub-paragraph 4. 1.2.2, the

block number and address indicate that the error occurred at the entry to

procedure CAT and the error number indicates a mismatch between actual

and formal parameter types. The call which was responsible for this error

is at, or just after, the label LOOP: since the return is to address 20 and LOOP

is at address 18. Anegative numberunder ADR shows that the error was detected

in a "built-in" library function,

The error numbers and their meanings are given in the

table below.
4.3.1 Undetected Errors.

: In the special case of a formal procedure whose

parameters are being compared with those of an actual procedure, boolean

and integer parameters are indistinguishable in all circumstances, thus

50

(Issue 4)

boolean
boolean array

boolean procedure

900

Ze led

are not integer

distinguished integer array

from integer procedure

Corresponding errors in parameters to ordinary

procedures are, of course, detected at translation time.

4,3.2 Error Table at Run Time.

Error Value substituted or

Number Meaning Effect on continuation at 9

1 Parameter mismatch continuation not possible

2 Space overflow, e.g. too much | continuation not possible

claim on store for an array

3 Integer overflow continuation not possible

4 Jump error, i.e. switch continuation not possible

subscript outside its

permitted range

5 Subscript error, i,e. address | continuation not possible

outside the store area allotted

to the array referred to

6 Illegal symbol inside inner newline is substituted

string quotes (only discovered

when the string is output)

7 Attempt to output an unstand- ### is substituted

ardised floating point number

(Probably the result of an
error in a code procedure)

8 Illegal character or ’ found The read routine is re-entered

when attempting to read a

number

9 Real overflow P is substituted

10 Invalid argument for sin(E) 0-0 is substituted

or cos(E), i.c. exponent

greater than or equal to 18

11 Negative argument for sqrt(E) sqrt(abs(E)) is substituted

12 Argument >40 for exp(E) P is substituted

13 Argument < 0 for log(E) 0-0 is substituted

14 Illegal character on data tape space is substituted

51

(Issue 4)

900
25; 12

Error Value substituted or

Number Meaning Effect on continuation at 9

15 Parity error on data tape space is substituted

16 (see Appendix 2 paragraph 3.6)

17 Numeric character found The instring operation is ignored

before when attempting to

read a string

18 Illegal form of number input Number read so far is ignored,

(e.g. 2.21.3) and the read routine re-entered

19 A Bwith A and B real and 0.0 is substituted

A<0O

20 Program corrupted, possibly Continuation not possible

due to error in machine code

procedure

21 An attempt has been made to Continuation not possible

assign a value to a formal

parameter which is a constant

22 Range of array subscript Continuation not possible

bounds is negative

23 Instring or outstring error, Continuation not possible

i.e. Array not a one-

dimensional integer array,

subscript value is outside

range or instring overfills the

array.

24 Attempt to jump to a label in ‘Continuation not possible

an inner block or into a for

loop, or label incorrectly

declared in an outer block.

25 The Translator used for this Continuation not possible.

program is incompatible with

this version of the Interpreter.

Notes:

(1) P= (1-277) x 2°8

except for overflow of a negative real number where

P = -1.0x 28°

(2) When continuation is not possible entry at 9 results in a dynamic stop.

52

(Issue 4)

900
2.1.2

Chapter 5: OPERATION OF THE ALGOL SYSTEM.

5.1 GENERAL

903 Algol is a two-pass system. In the first pass, one

or more programs are translated to paper tape or checked for syntactic

errors. Inthe second pass, the translated programs are loaded and run one

at a time.

5.2 TRANSLATION

The binary translator tape (Tape 1) is read in by Initial

Instructions and clears the store before being loaded. There are five starting

addresses:

8 Normal
9 Continue (after halt code etc).

10 Report mode (gives warning, report and error

messages only).

ll Checking mode (as Normal but CHECK functions

included).

12 Library mode (as Normal but a library scan takes

place after translation).

13 Library checking mode (as 12 but CHECK functions

included).

14 Normal mode with reports (use only if on-line teleprinter

fitted; punches intermediate

code and prints reports).

After an error has occurred the mode changes to Report

mode.

Algol text, which may be offered on several tapes, is

translated into a relocatable binary output until either

1 The final end is read. :

2 The Algol text shoots through the reader after

the final end.
«

Case l

In this case a wait occurs. If the standard trailer is

50 blanks, 6 erases and 100 blanks has not been output then the library tape of

Algol functions (Tape 3) should be offered and a start made at 9. This

causes appropriate sections to be copied in relocatable binary form on to the

end of the User's tape and this is terminated by the standard trailer. This

will only be required after use of Library or Library checking mode.

For all other starting addresses the output is complete,

but may contain a visible X just before the standard trailer. This indicates

a failure somewhere and the last piece of tape should be printed.

53)

(Issue 4)

900
2.1.2

Case 2

If the Algol text shoots through the reader the program

is corrupt. Remove it and proceed to translate the next program.

It is unlikely that an erroneous Algol program will

corrupt the translator.

When translation is completed successfully, and the

final trailer is output, the input tape is read and copied up to and including

the next halt code. This allows small quantities of data to be copied from

the end of the source code tape, convenient for input at run time.

5.3 LOADING AND RUNNING

The binary interpreter tape (Tape.2) is read in by Initial

Instructions and clears the store before being loaded. There are six starting

addresses:

8 Load an object program tape.

9 Continue after a wait.

10 Execute a loaded program.

11 Read in a related relocatable tape.

12 Establish the library in the store.

13 Read in an object program over the library.

Start at 8

This causes the object program tape to be loaded after

the end of the library in the store; the entire library is in the store and

accessible to the User. If there are library functions on the tape, FC will

be output, and the program must be re-loaded at 13.

It may happen that not enough store is available in which

case the program should be retranslated in Library mode and loaded by a start

at 13 (see below)

Start at 9

This continues after any wait or after a continuable error.

Start at 10

The name of the program is punched and then execution

takes place as directed by the User's program.

At the end of the program or when the procedure STOP

is executed, the message FINISH is punched and followed by 100 blanks.

54

(Issue 4)

900

Be, Deed

Start at ll

This is for supplying a machine coded procedure at run

time instead of at translation time. It must have been preceded by a start at

8 or 13.

Start at 12

This establishes the library in the store which is

necessary if ever a start has been made at 13. Offer Tape 3 and start at 12.

It may be used to load modified versions of the library.

Start at 13

This loads a complete program over the library. This

start must be employed if the Algol program had been translated in Library

mode and had extracted a program from the library.

During loading a storage map is produced on the punch

and. any errors which are detected cause messages to appear among the

storage map. Ifa previous program has overwritten the loader then, on

starting at 8 or 12 or 13, no input occurs, instead the message

RELOAD TAPE 2. is displayed.

5.4 DUMP facility

The dump facility allows a complete image of the store

to be dumped on paper tape. This facility is only available in 903 Algol on

the basic paper tape system for 8192 word (8K) stores.

It may be used for three purposes:

(1) To generate copies of the standard Tape 2, or versions

of Tape 2 modified by the user; e.g. with a different

"built-in" library.

(2) To dump an Algol program which has been loaded into

the Interpreter, so that in future the program may be

run by loading a single sum-checked binary tape.

(3) A long running program may be stopped, and a dump of

the current state of the store taken. The dump can

later be re-loaded and the program continued from the

point at which it was stopped.

To operate the dump, if an Algol program is actually

running set the level 1 switch (on the lower centre of the operator's control

panel) to Manual and press the level 1 interrupt button. Then or otherwise

enter at 14 to dump the store. A complete paper tape version of the first 8180

words of store will be output. This should be checked at some point by input

to the computer under initial instructions (entry at 8181), which is the normal

method of loading this tape.

55

(Issue 4)

900
2. Le 2

If the program was stopped by interrupt on level 1, it

may be re-started by entering at location 9 after the dump is complete.

Similarly, the dumped program may be re-started at location 9 after the

paper tape is input. Alternatively the program may be started from the

beginning by entry at 10, in the normal way.

The dump facility will not work if store above

location 8000 has been used for array data. If this store is currently in use

NO PROGRAM will be displayed on entry at 14.

The dump facility could be called from a SIR code

procedure by storing a return address in 20 and transferring control to

location 14 as shown in the following example:

[DUMP] (declare as:)

DUMP /14 0 (code procedure DUMP; algol;)

+0

4 CONT

5 20

8 14

CONT 0 ;+1 (continuation address)
0 DUMP+1 (On re-entry at 9, exit from DUMP)

/8 1
%

The dump facility may be used as a means of producing

copies of the Interpreter for the basic 8K paper tape system, by simply loading

the Tape 2 and entering at 14. These copies should be checked by input (at

8181) in the normal way. Similarly, the Translator (Tape 1) for the basic

system may be copied by entering at location 8000. The copies produced in

this way will not have the legible titles on the leading end, otherwise they are

accurate copies, which may be used to produce further copies.

5.5 Altering the built in library

Chapter 3.5.2 describes how procedures written in SIR

code may be added to the library tape. This library tape may be "built-in"

to the Interpreter (Tape 2) by loading at 12 and then dumping Tape 2 as
described in 5.4.

New names may be added to the built-in name list in

the Translator (Tape 1) as follows:

(1) Prepare a tape equivalent to the start of a 903 Algol

program, with the required names declared as a series

of code procedures, followed by a halt code. "END"

must not appear on this tape. See the example below.

56

(Issue 4)

(2)

(3)

900
Die she B

Input this tape to the Translator (Tape 1) by entering 10

(Report Mode).

Enter at location 16. A complete version of the

Translator will be output on paper tape, with the new

names added as declarations to the "built-in" list.

Example:

If two procedures RANDOM and MAX had been added to

the library tape, the following code might be used to

enter these into the "built-in" Translator list, as in

(1) above.

TITLE; 'BEGIN"

"CODE" "REAL" "PROCEDURE" RANDOM (I);

"INTEGER" I; "ALGOL";

"CODE" "INTEGER" "PROCEDURE" MAX (A,B);

"INTEGER! "ARRAY" A; "REAL" B; 'ALGOL";

(3) (Halt code)

57

(Issue 4)

900

2.1.2

Appendix 1: COMMON ERRORS MADE IN PROGRAM WRITING:

1.1 PROGRAM CHECKING

A program, whether in Algol or any other programming

language can be a fairly intricate composition, and it is recommended that a

systematic check be made for errors and slips before first running it. The

computer does not ignore slips; an apparently trifling error in punctuation

may well make a program unacceptable or, what is worse, lead to incorrect

results. The following list of checks will indicate the type of mistakes

most commonly made.

1... 2 General Program Checks.

(1) Check that the multiplication symbol * has

not been omitted - a common and simple mistake to make and to overlook.

(2) Make sure that no division by zero, no

determination of the logarithm of zero or of a negative quantity, no determination

of the square root of a negative quantity, and no evaluation of atb (a < 0,

b non-integral) or any other undefined operation can occur.

(3) Check that all numbers are written in the

accepted forms ,

(4) Check that two arithmetic operators do not

appear next to one another.

(5) Check that when testing the magnitudes of

quantities the absolute values of these quantities are used,

(6) Check that cycles are nested correctly and

that each cycle terminates.

1.1.2 Special Checks for Algol

(7) Check throughout the program that all basic

words used (begin, end, for, etc) are underlined.

(8) Check throughout for the correct spelling of

basic words.

(9) Check for correct punctuation; in particular,

check for the correct placing of semicolons.

Remember that the first symbol following any statement must be either

; or else or end

and that end must be followed by a semicolon, else or another end (intervening

words are treated as comment). Failure to put a semicolon after end will

result in the next statement being treated as comment and not translated and

consequently not executed. Check also that the word comment occurs only

after a semicolon or begin, and that the comment material is terminated by

a semicolon.
Appendix 1

1

(Issue 2)

900

2.1.2

(10) Check that for every if there is a corresponding

then. Check also that an if never follows a then. Remember that a

conditional expression must always have an else part, although a

conditional statement need not. Thus the statement

if A<0 then Ai=-A

is equivalent to

A:s if A< 0 then -A else A;

and it is incorrect to write

A:=if A< 0 then -A;

(11) Check that all variables on the left-hand side

of an assignment statement are of the same declared type (e.g. at= bi=

c#d is incorrect if a is real and b is integer).

(12) Check the correct use of brackets; in

particular, check that there are corresponding opening and closing brackets

in arithmetic expressions, that the argument for a standard function is

enclosed in brackets (e.g. sin(x) not sin x) and that square brackets are

used in arrays and around suffixes. Remember the natural order of

precedence of the operators in arithmetic, or Boolean expressions, and

check that brackets have been used to change the order of execution of

operations where required.

(13) Check that each begin has a corresponding

end.

(14) Check that each compound statement (i. e.

a sequence of statements to be executed together as one unit) is bracketed

between begin and end. This check is particularly necessary in the case

of a compound statement following a for clause or a compound statement

constituting a branch of a conditional statement.

(15) Check that all variables are declared and

are not used outside the block in whose head they are declared, and that

variables are not introduced into expressions before values have been

assigned to them. Check also that identifiers differ in their first six

symbols. Check that all labels are declared in a switch declaration at

the head of the innermost block in which the statement to whichthey are

attached occurs. Check that declarations occur only at the head of a

block.

(16) Check that the operator + (or its equivalent

form div) is used only when both operands are of type integer. In particular,

note that the result of exponentiation if j is real even when iand j are of

type integer, so that (if j +2) is incorrect.

Appendix 1
2

(Issue 2)

900
2.:1.:2

(17) Check the correct use of labels in goto

statements. No goto statement may lead from outside into a block or from

outside a for statement to a statement within the for statement.

(18) For every conditional statement or expression

establish two tests, one which makes the arithmetic comparison true, and

one which makes it false. By following the action of the program for both

these cases check that the program always behaves correctly.

(19) When using a for clause, such as forV:= L do,

remember that when the list of values of V is exhausted, the variable V

cannot be used again in the subsequent program until it has been as signed a

value. V retains its current value only when a goto statement brings about a

jump out of the for statement before the list of values of V is exhausted.

(20) Numbers of type real cannot in general be held

absolutely accurately in the computer, The error is only of the order of one

part in 1078 but it must be borne in mind when the equality of two real

numbers is tested for. Thus the relation A = B may have the value false

at a certain point in a calculation even though A and B are theoretically

equal. To avoid errors of this sort, write the relation instead as

abs(A - B) < epsilon, where epsilon is a suitable small positive constant.

This inaccuracy in the computer representation must also be taken into

account in for statements. Thus

for A:= 1 step 1/3 until 2 do C;

could result in the statement S being executed for A= 1, 13, 19, but not for

A =2. On the other hand,

for A:= 1 step 1/3 until 2.+ epsilon do S;

is safe.

The list given here is not exhaustive.

It is good practice to work through the program

with a set of test data, to make sure that it behaves correctly at every stage.

This is often the best way of locating errors.

Appendix 1]

3
(Issue 2)

900
2.1.2

Appendix 2: NOTES FOR USER'S OF ALGOL ON 920 COMPUTERS.

I. General.

Two forms of Algol are available on 920 computers:

1 903 Algol.

2 920 Algol.

A special version of 903 Algol which operates in 503/920 telecode.

This special version is known as 920 Algol.

1.

1.

1.3. Mode Switch.

The tape-reader mode switch is referred to below. On certain

920 computers a mode switch is not fitted, or if fitted is marked in a different

manner from that described. The modes of operation are therefore defined

here (s indicates the sprocket hole).

Mode 1 (Also known as 503 mode)

Track on tape 12384567 8 Bit 5 not used
bue v vv

Accumulator 12 3 4 567 8 Bit 8 not affected

Mode 3 (Also known as 4100 mode)

Track on tape 123s45678

Accumulator 123 45678

2. Use of 903 Algol on 920 Computers.

2.1 If amode switch is fitted to the paper tape station it must be set

to position 3.

2.2 Certain 920 tape readers are of a type which does not stop on a

character, if a machine with such a tape reader is used the following

precautions must be taken.

2.2.1 On program (source tapes) every new line must be

followed by three blanks (instead of the one normally recommended).

2.2.2 On data tapes the terminator of every data item must be

followed by three blanks.

Appendix 2

1
(Issue 4)

900
261.2

3. Use of 920 Algol.

3.1 Ifa mode switch is fitted to the paper tape station it must be set

to position l.

3.2 Certain 920 tape readers are of a type which does not stop on a

character, if a machine with such a tape reader is used then;

3.2.1 On both program and data tapes every new line character

must be followed by three blanks.

3.2.2 There may not be more than 120 characters on a line of

data.

3.3 Character set.

The following special punching conventions apply.

Algol Hardware representation punching method

Symbol 903 Algol 920 Algol for 920 Algol

— ‘% t + vertical bar followed by < or 7

begin etc "BEGIN"etc “BEGIN” etc

additional characters

3 4 vertical bar followed by 2

§ $ vertical bar followed by S

= ?

All other characters are punched as described in chapter 1. No

other compound characters are recognised. It should be particularly noted

that the non-escaping underline character must not be used and that basic

words must be punched in the style described above.

3.4 Tapes

The tapes are marked

920 Algol Tape 1 (Translator)

920 Algol Tape 2 (Interpreter)

920 Algol Tape 3 (Library)

Appendix 2
2

(Issue 2)

900
2.1.2

3.5 Error messages at translation time.

Unrecognised characters are replaced by ?
Wrong parity characters are not detected.

3.6 Error messages at run time.

If a line of data contains more than 120 characters error No. 16

is displayed. On continuation the entire line of text is ignored.

3.7 Facilities available in 920 Algol

All the facilities described up to the last paragraph of Chapter 5.3

are available. Copying of data by the Translator, the Dump Facility, and

procedures for Optional peripherals, are not available.

Appendix 2
3

(Issue 4)

900

2. H:2

Appendix 3: USE OF OPTIONAL PERIPHERALS

1. USE OF THE 903 DIGITAL PLOTTER

A set of procedures are provided which enable a 903 Algol program to

use the plotter. Procedures are available for drawing, plotting points, and

drawing characters. The procedures are included in the 903 Algol Library

tape, and have "built-in" declarations in the Translator, as for SIN,

INSTRING, etc. However, unlike the standard library routines, they are not

"built-in" to the Interpreter (Tape 2). Programs using the Plotter, therefore,

must always be translated in Library mode (entry at 12, see Chapter 5. 2) and

loaded by entry to the Interpreter at 13.

The facilities provided are a subset of those in Elliott 4100 Algol.

Tel Drawing and Plotting

Four procedures are available for use in drawing graphs,

pictures and diagrams. SETORIGIN must always be used before any other

output to the plotter.

1.1.1 SETORIGIN (E, PAGE)

This procedure is used to set the origin and position the

pen. Itis anon-type procedure, with two integer parameters, called by

value.

The origin is set E plotter steps from the left margin of the

plotter, and this point is taken as having zero coordinates (O, O).E should be

a positive integer, greater than or equal to 10. The penis left in the raised

position.

PAGE determines the orientation of the axes. If

PAGE = 0 the X - axis runs across the paper, from West to East, and the

y-axis runs from South to North along the paper. If PAGE = 1 the X-axis

runs along the paper, and the y-axis across the paper, i.e. the axes are

rotated through 90 degrees in an anti-clockwise direction.

If PAGE is not equal to 1 it is taken to be zero. "North"

in this context is the direction from the pen towards the roller from which

paper normally unwinds. One plotter step is the distance covered by the pen

during one increment. The actual length varies with the plotter models.

Appendix 3

1

(Issue 3)

900
2.1.2

1.1.2 DRAWLINE (E, F)

This procedure draws a line with the pen down, from the

current pen position to the point with coordinates (E, F). It is a non-type

procedure with integer parameters called by value. E and F are measured

in plotter steps. On completion the pen is left in the lowered position.

1.1.3 MOVEPEN (E, F)

MOVEPEN has a function similar to DRAWLINE except

that the pen is moved in the raised position to the point (E,F). On completion

the pen is left in the raised position.

1.1.4 CENCHARACTER (N)

This procedure is used to plot points on a graph. It draws

a character centred on the current position. On completion of the character

the pen is left raised in the original position.

The character drawnis a small+. The procedure is non-

type, with one integer parameter called by value. The parameter should

have value +1. It is inserted for compatibility with 4100 Algol.

1,2. Printing of Numbers and Text

The digital plotter can be used as an extra output device for

"PRINT" statements. Before characters can be drawn the procedure WAY

(D, L) must be called. After a call of WAY a call of PUNCH (5) will cause

the plotter to be taken as the current output device, and characters for output

will be drawn on the plotter.

The character set for output is:

letters A to Z
figures 0,1,2,3,4,5,6,7,8,9
symbols +- 35 *#=

space.

All other symbols including n° ...:ne are output as an inverted V character (A).

The procedures SETORIGIN and WAY must be called before the

use of PUNCH(5).

WAY (D, L) is a non-type procedure with two integer parameters

called by value. D should have the value zero, and is inserted for

compatibility with Elliott 4100 Algol. L determines the size of the

characters to be drawn. If Lis less than one it is taken to be equal to one,

otherwise the size of characters is proportional to L. The size of

Appendix 3

Z

(Issue 3)

900

Ze kee

characters depends on the plotter step size, useful values of L are in the range

4 to 25, giving widths of L*2.5 plotter steps, approximately.

All characters output on the plotter are drawn in a grid of squares

whose size depends on the last callof WAY. The initial pen position is at the

bottom left-hand corner of the square. The final pen position is at the bottom

right-hand corner, ready for drawing the next character. Right in this context

is the direction of increasing X, as determined by the last call of SETORIGIN.

1.3 Example

The following program might draw the graph shown:

PLOT; "BEGIN" "INTEGER" X, Y;

SETORIGIN (2500, 1); WAY (0,6);

DRAWLINE (0, 2000); MOVEPEN (4000, 0);

DRAWLINE (0,0); MOVEPEN (0, -60);

"PRINT" PUNCH(5),” GRAPH “S2> X-AXIS°;

MOVEPEN (0, 0);

"FOR"X:=10, X+10 "WHILE" Y "GE" 0 "DO"

'BEGIN' "READ" Y; DRAWLINE (X, 10*Y);

"BND!" ;

"END";

paper
a=

GRAPH X-AXIS

Appendix 3

3

(Issue 4)

900
2.22

APPENDIX 4: USE OF EXTRA CORE STORE

1, OPERATION of the 903 ALGOL 16K (LG) SYSTEM

1.1 Purpose

Algol programs may be translated and run "load and go" using
this system, which requires 16384 words of core store. The program is

assembled in store as it is translated from Algol source code, and is ready

for running as soon as the Translation is completed succesfully,

The system is designed for convenience in testing small programs,

particularly testing batches of student programs,

1.2 Store available

The store is allocated as follows:

Algol Interpreter 0 to 4000 (approx.)
Space for program, library
routine and data 4000 to 7500

Translator and loader 7500 to 16200

The space available for the largest program is therefore 3500

words, The translator and loader may be overwritten by data (arrays),

however, in this case the compiler tape must be re-input before the next

program can be run, If batches of programs are to be run, without

overwriting any part of the system, the space available for program plus
data is 3500 words, Otherwise the space available for program plus data

is 12300 words, with program limited to 3500 words, (see 1.5 below),
Larger programs should be run using the 16K (LP) sy stem.

1,3 Operation

1, 3.1 Normal operation

(1) Load the tape 903 ALGOL 16K (LG) by Initial
Instructions (entry at 8181)

Continuous output on the punch or lighting of the "READ"

lamp when the end of tape is reached indicates misread or damaged tape.

(2) Load the Algol program tape and enter at 8. This

translates the program and assembles it into one

operation,

(3) Ifthe program is continued on further tapes,

continue at 9.

(4) To run the program, load any data tape required and

enter at 10. The operator should not attempt to run

the program if any error messages were output at

Translation,

Appendix 4

1

(Issue 4)

(5) To run further programs, return to step (2). If the

message REINPUT TAPE 2 is displayed, return to

step (1).

1.3.2 Report Mode

If it is likely that the program contains errors, or if an

address is required to interpret run-time errors, translate in Report Mode

or in Checking Mode (see 1. 3. 3). To translate in Report Mode, at step (2)

above enter at 16.

1. 3,3 Checking Mode

To include check functions in the translated program

(Chapter 3. 3) translate by entering at 11 in step (2) above. This mode also

produces Report Messages.

1

1, 3,4 Library Mode.

If the program is too large to fit in the store available with

all the "built-in" library procedures, try translation by entry at 12 in step

(2) above, When the final end is read, load the Library (Tape 3) and enter

at 9.

1,3,5 Library Checking Mode

This combines the functions of Library mode and Checking

Mode, Enter at 13 to translate in Library Mode, with checks included, and

Report Messages displayed, When the final énd is reached, load the Library

(Tape 3) and enter at 9.

1. 3,6 Adding SIR code procedures

SIR code procedures must be assembled to paper tape

using the SIE assembler, before step (1) above. If they have been added to

the library tape (Chapter 3, 4, 11. 1) use Library Mode. (1, 3, 4 above),

Otherwise, when step (2) is complete, using any of the Modes described,

load the code procedures in translated form and enter at 14, Further code

procedures should also be loaded by entry at 14.

1,3,7 Re-establish the "built-in" library in store

If further programs are to be run after use of Library Mode

the "built-in" library must be restored, Load the Library (Tape 3) and

enter at 15,

Appendix 4

2

(Issue 4)

900
yn ot

2.1, 2 gz

1, 3,8. Translation to paper tape for large programs

. If a program is too large to run on the Load and Go system;

it may be translated to paper tape and run on the Large Program (16K (LP))

system, Load the Algol program tape and enter at 17 to translate to paper

tape. This corresponds to entry at 8 to the basic Translator. If check

functions are required the basic Translator (Tape I) must be used.

1.3.9 Summary of entry points

8 Normal load-and- go translation

9 Continue after wait
10 Run program

11 Load-and- go translation, with Check functions and

Reports

12 Library mode, load-and-go translation

ty 13 Library mode, load-and-go, with Check functions and

acc , : Reports

14 Load a relocatable binary SIR procedure

cs maton 15 Re-establish built-in library

—_s 16 Report Mode :

i 17 Translate to paper tape (ready for 16K (LP) system),

| 1,4 Error indications
|

Error indications given are identical to thos ein the basic system,

(Chapter 4), If the program is too large for load-and-go operation the

loader error FE is output, and translation stops. The 16K (LP) system or

\Library Mode (see 1, 3, 4 above) must be used to run the program.

If the loader or translator is overwritten by data (arrays) no

indication is given, but when attempting to translate the next program the

message RELOAD TAPE 2 will be displayed. The compiler must then be

reloaded,

Warning messages are only given in the Report Modes (entries

at 11, 13, and 16), This avoids slowing down the normal translation,

However, if report messages are required all programs may be translated

by entry at 11 instead of 8, :

1.5 Use of large arrays

As stated in 1.2 above, the store from the end of program up to

16300 may be used for arrays. Note that locations 8180 to 8191 will be

overwritten in this case, The array data will not be preserved if any entry

is made to initial instructions.

Appendix 4

; j : 3

Uisee) \ (Issue 4)

900

2.1.2

2 16k (LP) LOADER/INTERPRETER

2 I Introduction

2.1.1 Purpose

The 900 ALGOL 16k (LP) Loader /Interpreter is provided

to make it possible to run 900 ALGOL programs that are too large for the 8k

and 16k (LG) systems.

2.1.2 Configuration

The minimum hardware configuration required for the

operation of this system is a 903 or 905 with 16384 words of core store,

paper tape reader and punch, and an on-line teleprinter..
cy

2.1.3 | Environment

The 900 ALGOL 16k (LP) Loader/Interpreter is designed

for use in conjunction with the 900 ALGOL 8k Translator (Tape 1) and the

900 ALGOL Library (Tape 3). (Both tapes at Issue 6 or later.)

2.1.4 Form of Distribution

The 900 ALGOL 16k (LP) Loader/Interpreter is distributed

as a single sum-checked binary (SCB) paper tape for input by initial instruc-

tions. ,

2.2 Method of Operation

2.2.1 Translation

The ALGOL program should be translated to a relocatable

binary paper tape in accordance with the instructions given in 900

Programming Manual, Volume 2.1.2, Chaper 5.2.

Translation in library mode (including library mode with

checks) must not be used.

Any SIR code procedures must be assembled to relocatable

binary tape using the standard SIR assembler. (See 900 Programming Manual,

Volume 2.1.1, Chapter 3.4. 3.)

2.2.2 Loading and Running

Load the 900 ALGOL 16k (LP) Loader/Interpreter tape

under initial instructions, This tape contains a built in library (see,

Chapter 3). :

Appendix 4

4
SDRN/ALGOL/14 °

900
2.1.2

a7 JUN (973. . ’ There are six-entry addresses for loading as follows:

8 - Load an ALGOL program maintaining existing library and code

procedures,

9 - Load an ALGOL program maintaining existing library only.

10 - Load an ALGOL program overwriting existing library and code

: procedures.

11 - Load a code procedure -maintaining existing code procedures.

}2°- Load a code prodecure overwriting existing code procedures.

13 - Load the library overwriting existing library and code procedures.

Any entries at 11, 12 or 13 that may be necessary must

be made before an entry is made at 8 or 9. This is because the library and

SIR code procedures are loaded on level 1 but the ALGOL program is loaded

on level 4 and is self triggering. If the ALGOL program is loaded successfully

into core a prompt character («—) is output on the control teleprinter. The

operator should then type one of the following command letters:

(i) R to run the program

(ii) D to enter the dump facility (see Chapter 2. 3)

When a run is complete the word FINISH followed by a

further<— is output on the control teleprinter. The operator may then

type R or D as before or load further tapes at any of the six entry addresses.

An attempt to load further tapes may cause one of the following commands

to be output on the control teleprinter.

(i) RELOAD MACHINE, CODE

This indicates that part of the SIR code procedure

dictionary has been overwritten. Any required

SIR code procedures must therefore be loaded at

12 and 11.

(ii) RELOAD LIBRARY

This indicates that the SIR code procedure dictionary

and part of the library procedure dictionary have been

overwritten. Any required library and SIR code

procedures must therefore be loaded at 13, 12 and 11.

(ii) RELOAD SYSTEM

This indicates that both the SIR code and library procedure

-dictionaries together with part of the loader have been

overwritten, Reload 900 ALGOL 16k (LP) Loader/

.Intérpreter under initial instructions.

Appendix 4

5

“SDRN/ALGOL/14

2.2.3 -The Dump Facility

The dump facility allows a complete image of the core

store to be dumped to paper tape for subsequent re-input under initial instruc -

tions, There are two methods of entry.

(i) Type 'D' following a prompt character on the control

teleprinter.

(ii) After an entry at 13, 12 or 11 but before an entry at

10, 9 or 8 enter at 14. This enables the operator to

generate copies of the 16k (LP) Loader/Interpreter

with a modified built in library and/or code

procedures. Entry at 14 should not be used to dump

ALGOL programs.

Dumps produced by method (i) are automatically loaded on

level 4 when re-input under initial instructions. Successful loading is

indicated by a prompt character on the control teleprinter. The operator

should type R to run the program.

, Dumps produced by method (ii) are loaded on level 1 and

enter a dynamic stop if loaded successfully.

2.2.4 Increasing the Store Available for Arrays

(i) If no library or SIR code procedures are required

load the ALGOL program at 10.

(ii) If only SIR code procedures are required load the

first at 13 the second at 12 and subsequent ones at

11.

(iii) If library procedures are required the size of the

library may be reduced by selectively copying sections

of the standard library. (Note: SIN and COS must

go together under the name QATRIG, and INSTRING

and OUTSTRING under the name QASTRI.) The

number of blanks between each procedure and before

the final terminating character is not significant.

2.2.5 Error Indications

: Error indications are as for the 8k ALGOL System with

the following additions:

(i) If on entry at 13, 12 or 11 an attempt is made to load

a library or SIR code procedure beyond location

817940 the message 'FZ' is output on the control

teleprinter.
Appendix 4

6: .
SDRN/ALGOL/14

900

2: le

yo 6.5
7 Ww (ii) Standard error messages are followed by the prompt

character (#—) on the control teleprinter. The

operator should then type one of the following

command letters:

(a) C to continue

(b) D to enter the dump facility (see Chapter 2. 3):

N. B. If C is typed following a non-continuable error

the prompt character is output again.

ae 3 The Library

The 900 ALGOL 16k (LP) Loader/Interpreter contains a built in

library consisting of the following standard procedures.

DECODE SQRT

ADVANCE LOWBOUND

BUFFER RANGE

SIN OUTSPRING

COs INSTRING

ARCTAN

2.4 Store Allocation

The Interpreter occupies core locations from 0 to 4400

approximately. The library and SIR code procedures are loaded from

location 4400 upwards but cannot extend beyond location 8179. The loader

is approximately 750 words long and is located at the top of Module I,, The

library procedure, SIR code procedure and ALGOL program dictionaries

extend downwards from the beginning of the Loader but, together with the

Loader, may be overwritten at run-time. The ALGOL program can extend

from end of the SIR code procedures to the beginning of the ALGOL program

dictionary but must not exceed 8192 words in length.

Appendix 4

7
SDRN/ALGOL/14

900

Ziel ihe

APPENDIX 5: USE OF NON-STANDARD PERIPHERAL DEVICES

1. INTRODUCTION

This document describes how additional peripherals (other than

standard reader, punch and teleprinter) may be addressed by standard "read"!

and "print'! statements in an Algol program.

2. METHOD

2.1 Introduction

The non-standard device should be assigned a device number, N,

in the range 1-10, not already assigned to a standard device. (See Table

1).

The user must write a device routine for the non-standard device

together with a Machine code seteup procedure to load the address of the

device routine into the appropriate table in the Algol Interpreter. This

procedure may, but need not, have one or more parameters to control input/

output from/to the device.

The device routine and the seteup procedure will normally be part

of the same SIR block and may, if required, be added to the standard Algol

Library. (See 900 Manual Volume 2.1.2 Section 3:52).

To address a non-standard device an Algol program must firstly

make a call of the appropriate set-up procedure. Thereafter the device may

be selected by the standard statements, reader (N) and punch (N).

202 SeteUp Procedure for an InputDevice

The set-up procedure for input device, number N must;

1) Load +0 into Location (BUFFER+N-1) in the

Algol Interpreter if location (INSLOT+N-1)

does not already contain the address of the

device routine.

2) Load the address of the device routine into

location (INSLOT+Ne1) in the Algol Interpreter.

2.3 SeteUp Procedure for an Output Device

The seteup procedure for output device, Number N, must:

1) Load the address of the device routine into

SDRN/ALGOL/13 App. 5e1

900

Qi Lied

location (OUTSLT+N-1) in the Algol Interpreter.

2.4 Device Routine Entry and Exit

Output device routines will be entered with the character to be

output, in SIR internal code, in the Awregister.

Input device routines should exit with the character input, in SIR

internal code, in the A-register.

Exit from input and output device routines must be via the

Interpreter link locations ICHLNK and PCHLNK respectively.

App. 5=2 SDRN/ALGOL/13

A} 10.67 2

900

2,142

TABLE 1

900 Algol - Device Numbers

Number Device

1 Paper Tape Reader/Punch

Z Reserved

is Teleprinter

4 Lineprinter

5 Plotter

6 Card Reader/Punch

7 Not allocated

8 Not allocated

9 Not allocated

10 Not allocated

SDRN/ALGOL/13 App. 5+3

900
fel 2

TABLE 2

Example of an InputDevice SeteUp Procedure

*0 (Card Reader Routine)

[CARDIN]
FP=138

ICHLNK=229

BUFFER=231

INSLOT=241

CARDIN /14 1 (one parameter)

+0

0 FP

/4 3
5 BUFFAD (Parameter is buffer address)

4 INSLOT+5
2 ENTRYA

0 CARDIN+L

/7 1 :

4 ENTRYA (Store device routine address)

5 INSLOT+5 (Card reader device number 6)

4 +0 (Clear Interpreter Input buffer)

5 BUFFER+5

/8 1

ENTRYAO ENTRY

ENTRY 4 BUFFAD (Device Routine)

'
'

(Read Caid into users array buffer one column at a time and

convert to SIR internal code equivalent.) -

1

EXIT 0 ICHLNK (Device routine exits with

/8 1 SIR internal code character

in A-register.)

App. 5-4 SDRN/ALGOL/13

TABLE 3

900

Qadied

Example of an Output Device SeteUp Procedure

«0

[LPRINT]

PCHLNK=230

OUTSLT=251

LPRINT /14 0
+0

4 ENTRYA
5 OUTSLT+4+3

0 LPRINT#+I
/8 1

ENTRYA 0 ENTRY

ENTRY 5 CHAR

(Store character in local
buffer and output when

CHAR is linefeed)
‘

EXIT 0 PCHLNK

/8 1

SDRN/ALGOL/13

(Lineprinter Routine)

(No parameters)

(Store device routine address)
(Lineprinter device number 4)

(Device Routine entered with

SIR internal code character

in A-register.)

App.5e5

900
Bie disies

Fixed Locations in the Algol Interpreter

Issue 5 - 8k, 16k(LG) and 16k(LP)

FP = 38

ICHLNK =129

PCHLNK =130

BUFFER =131

INSLOT =141

OUTSLT =151

Issue 6 = 8k

FP =138

ICHLNK =229

PCHLNK =230

BUFFER =231

INSLOT =241

OUTSLT =251

App’. 5-6

TABLE 4

SDRN/ALGOL/13

