
Marconi-Elliott Computer Systems Limited 
AGEC-English Electric Company 

Elstree Way, Borehamwood, Hertfordshire 
Telegrams and Cables: Elliotauto Borehamwood 
Telex: 22777 Answerback : Ellauto Borhwd 
Telephone : 01-953 2030 

© 1970 Marconi-Eiliott Computer Systems Limited 

Printed by Quadrant Offset Ltd., Hertford, England Issue 1. E2SaD; 5/70 

M
E
C
S
 



MANUAL OF WORKSHOP SYSTEM 

M.H. Beilby. 

Department of Transportation and Environmental Planning., 

University of Birmingham 

Head of Department: Professor J. Kolbuszewski. 



WORKSHOP 

INTRODUCTION 

'Workshop' is a computer program that allows Elliott 900 series 18 

bit machines to calculate required formylae on demand. It has been 

developed by M.H, Beilby of the Department of Transportation and 

Environmental Planning at Birmingham University to provide rapid 

solutions to a wide range of numerical problems. 

The program provides a system which can be used without any 

knowledge of computer programming. Once given mathematical formulae, 

the machine writes its own programs, runs them and provides the results 

without further attention, The formulae can range in complexity from the 

simplest addition of a calculating machine to the intricacles of design 

calculations and statistical tests. 

The system can be fully utilised when a teleprinter is connected to 

the computer directly. In this 'on-line' mode, 'Workshop' becomes truly 

interactive. It checks the information that has been typed to ensure that 

the requirements of the operator can be fulfilled. Any errors are 
reported and may be corrected as they occur. Also on completion of the 

calculations, the required values are left in store for subsequent 

manipulations. In this form, the user who is not familiar with computers 

can take advantage of their speed and power of calculations while his more 

experienced counterpart may be relieved of repetitive simple programming. 

When the teleprinter is 'off-line' to the computer, the system will 
read the formulae as they have been punched on paper-tape. It replies 

via the paper-tape punch on the computer. In this case the machine can 

process formulae in batches,- working and commenting on them in turn 
without any intervention from the operator. 



CONTENTS 

OPERATION OF 'WORKSHOP' ON-LINE 

OPERATION OF 'WORKSHOP' OFF-LINE 

SPECIFICATION OF FACILITIES 

ERROR MESSAGES 

WORKSHOP SYSTEM PROGRAM 

Al-Al7 

B1-B2 

Cl-C12 

D1-D5 

El 



a1 
OPERATION OF 'WORKSHOP'! ON-LINE 

ENTRY TO SYSTEM 

Once the ‘Workshop! program has been loaded into the computer and 

triggered, the bell of the teleprinter rings and a > symbol is printed. 

The > symbol is a signal that always indicates that the computer is waiting 

for something to be typed. 

Initially the operator must enter a reference code for the following 
calculations. To do this he will type a £ sign followed by a series of 

letters and digits. As a convention it is suggested that this might be 

his initials followed by a number e.g. 

£MHBOO1 

If 'cr lf! (carriage returnline-feed) is now typed, the machine will 

check whether the code is of an acceptable form. If, say, there were no 

code of this form e.g. the typing commenced with 

>375.6 cr lf 

then a message would appear asking the operator to identify himself so 

>375.6 cr If ++++.as typed by the operator 

$ 30 €----- computer report: 
points to offending character 

PSE GVE CDE $ "please give code" 

$ BEG LST LNE$ "begin again at last line" 

> «+... signal for more information 

He would then start typing the correct code. 

If the code is acceptable, the > symbol alone is printed and the 

computer waits for the continuation of instructions about the required 
calculation so 

> MHBO001 cr lf +++..as typed 

> «+e. Signal to continue. 

At any time subsequently the operator may clear the system and begin 
again by retyping the £ sign with his initials and number. This eleminates 

all the information from the stores and provides him with a fresh start. 

SPECIFICATION OF THE CALCULATIONS 

Once in the system, the operator specifies the calculations he requires. 

He does this a line at atime. On completion of each line he types cr If 
characters and waits for the computer to check the information. Any error 

that is found is reported inside $ signs and an indication is made of where, 

if possible, the operator is to start again. He will continue when the > 

symbol appears, 

Al 



If an error is notice'’d by the operator before the end of the line is 

reached, a < symbol may be typed so clearing the current line and providing 

afresh > symbol. In certain circumstances (see p.Al0) the operator may 
clear to an earlier stage than the beginning of the current line. To do 

this he must type the < symbol as the first character on a new line and await 
the computer report. 

If the computer finds no fault with the line, it punches out a separate 
record at the paper-tape punch and provides a further > symbol on the 

teleprinter, The operator then continues with the next line. 

The calculations themselves are specified by a series of typed comm- 

ands. The use of the commands can best be illustrated by considering the 
'Workshop' system as a substitute for a calculating machine and then 
developing the facilities. 

1) THE 'WORKSHOP' SYSTEM AS A CALCULATING MACHINE 

In the 'Workshop' system there are two commands that will provide 

the services of a calculating machine. They are the typed words PRINT and 

RUN. Once a PRINT has been typed the computer will expect a formula to 
follow. It will read and check it. If RUN is then typed, the formula will 
becalculated and the result printed on the teleprinter. 

A simple operation might be to add up the values 

67932. 421 

73645 

374594, 83 x 10° 

0.632 x 10°" 

+ 542 

This calculation would be presented to the system by typing 

>£MHBOO] cr lf 

>PRINT 67932. 421 +73645 + cr lf 

>374594, 83195 tke 0% 6329-7 + 4542 cr lf 

>RUN cr If 

Here the > symbol is printed by the computer and the remainder typed by 

the operator. The , figure is available of the teleprinter as a single 
character, 

After the last lf character has been typed, the computer would print 
the result so 

37459624578. 0 

> 

to a rounded accuracy of 12 significant figures. The > symbol shows 
that the machine is ready for more formulae. 

A2 

A further operation might be to calculate 

67932. 4210932. + 3.74958 - 2x 0.632 x 10°? 

~542 x 73645, 67777778 

for which the user would then type 

> PRINT cr lf 

>67932.4210932 / .542 * 73645, 67777778 + 3. 74958 cr lf 

ae te ie 2 * 0,632 5-7 cr lf 

>RUN cr lf 

The formulae is typed as its figures and symbols are read, to assist 

in layout, the line can be broken anywhere and extra cr lf or space characters 

inserted. After each set of cr lf characters, however, the operator must 

wait for the computer to reply with a > symbol before continuing. The line 

may be started, though, with a single or string of lf characters on their own 

and the comments continued without a > symbol being printed by the computer. 

After the last lf character of the above script, the computer would 
provided the result so 

5.45146617657 

with a signal to continue. 

As the computer store is limited, it is necessary to restrict the 

number of values entered between RUN commands to less than 50. If this 

is exceeded an error message is printed and the current line of type 
rejected. Similarly, if the formula is too long (this is unlikely in this 
type of operation) the current line is rejected. 

If the computer cannot perform the calculations for reasons, say, of 
dividing by zero, a report is made after the RUN command has been accepted 

e.g. 

> £MHB002 onal f 

> PRINT 34/0.0 cr lf 

> RUN cr lf 

$DIV BY ZRO $ Computer reports 

"Divide by zero! 

$$KP CUR CAL$ 

a: ++... Signal to continue 

'Skip current calculation' 

Sometimes the SKP CUR CAL report is not made. In this case the computer 

will attempt to continue the calculation with its own corrections, This 

procedure is then described in a computer report. 

Any values can be entered or printed within the range 
1024 2)024 =a -2 ve 

A3 



ige. approximately 
308 

10 to - i0°°® 

The machine is not able generally to cope with values' whose size is below 

-1024. -308 
2 i.e. approx. 10 . However, while it is calculating a formula, 
these ranges may be violated to the order of 64 times. If the ranges are 
exceeded, then an error message will be printed. 

Other mathematical operations are provided besides those used above. 

The following is a list of the operations that are useful in the calculating 
machine operation. It will be appreciated that the teleprinter keyboard is 
limited with regard to symbols and so the typed forms are listed alongside 
the mathematical symbols. 

mathematical teleprinter 
symbol symbol 

Addition + + 

Subtraction = < 

Division or | / 

Multiplication x * 

Raise to the power e.g. (Gia He g of =7 33) 

Brackets () e.g. 3 x (4+2) ()e.g. 3 * (4+ 2) 

Value of Pi n Q 

e.g. 20 eg. 2%*Q 

Square root WA Qsar 

eg. V5 e.g. QSQT 5 

Natural log I 1 ral log In or Log, QLNE 

Natural antlog ) 3.4 
Je or exp (3.4) QEXP e.g. 

Exponentiation ) QEXP3.4 

Cosine of angle in radians 

cos acos 

Sine of angle in radians 

sin QSIN 

Arctangent as angle in radians 
-1 

tan QATN 

Integer part [ ] or int QINT 

Modulus or mod QMOD 

Delta (x) =lifx=0 QDEL 
= 0 otherwise 

A4 

Sign Sign (x) = -lifx<0 

=0ifx= 0 QSGN 

=+lif x>0 

Factorial ! or L QFAC 

e.g. 7! or L7 e.g. QFAC7T 

These operations may be nested inside each other and may refer to 

compound expressions inside round brackets. It is suggested that they are 

typed exactly as they are read from a written formula. If there is any doubt 

as to the construction of the formula it is better to be liberal with the 

round brackets. 

It is worth noting that the / symbol is stronger than the multiplication 

*, Therefore if the following is presented 

5/2.* 3 

the resultis 5/6 = .83333 and not 15/2 = 7.5. 

Some examples will demonstrate the use of ‘Workshop! as a calculat- 

ing machine. 

1) Area and circumference of a circle radius, r = 7.245 

Formulae: Area Wr’, Circumference = 2™r 

> £MHB003 crlf 

> PRINT a*« 7.245 f2 crlf 

> RUN crlf 

and >PRINT 2%* Q * 7,245 crlf 

>RUN cr lf 

2) Annual percentage growth rate represented by an increase from 572 

to 894 over a period of 33 years. 

i.e. es 33 -1) x 100 

> £MHB004 cr lf 

>PRINT ((894/572) $ (1/3.5) - 1) * 100 cr lf 

>RUN cr lf 

3) Length of a parabolic segment of height, x = 3.9 and base, y = 7. 349 

= f4x + y¥ log, (2 tft! + Gv) 

yl2 

> £MHBO005 cr lf 

> PRINT QSQT (4% 3.9 $ 2 + (7.349/2) $ 2) +erlf 

AS 



>(7.349 t 2/8*3.9) * QLNE ((2*3.9+ QSQT (4*3.9 f2 cr 1f 
>+ (7. 349/2) # 2)) /(7.349/2) ) erlf 

>RUN cr If 

2) WORKSHOP SYSTEM FOR REPEATED CALCULATIONS 

An immediate development of the calculating machine operation 
would be to expect the system to be capable of repeating the formula calcula- 
tion for differentvalues. This it willdo on the introduction of algebraic letters 
instead of numbers. To extend the use of the system, three additional 
commands are relevant - WHERE, CALCULATE and REPEAT. 

In this new type of operation, the formula is used in its text-book 
form including the algebraic letters. 

An example might be 

which the system would recognise as 

asot (x f2 + ¥ f2) 
whether the X and Y are the variables ofthe formula. There are two 
acceptable forms for the variables: 

i, A single letter taken from the list 

ABCDEFGH OP RSTUVWXYZ 

ii A pair of letters, the first of which is from the list 
ABCDEFGHIJKLMNOP RSTUVWXYZ 

and the second of which is from the list 

ABCDEFGH OP RSTUVWXYZ 
Thus the following are acceptable variable names: 

AB A D T OT IR OR TX ZF KC S W: 

while these are not acceptable 

QAl LN FK WJ QA DFR GYTU 

It will be noted that some of the non-acceptable forms have other meanings 
to the system, 

The introduction of the WHERE command provides a means of 
assigning values to the variables. In the same way that a PRINT command 
is followed by a statement of a formula, the WHERE command is followed by 
ie statement of the value that a variable is to take. The form of the statement 
is 

WHERE variable name = value 

Ao 

For example 

WHERE A = 5.8974 

would instruct the machine to give the value 5, 8974 to the variable A 
whenever it was found ina formula, Therefore the example of the area of the 

circle Wr“ would become 

>£MHB006 

>WHERE R = 7.245 

>PRINT Q * Rb2 

>RUN 

It will now be possible to see the advantage of using variables instead 

of numbers. If it was required to repeat the calculation for a different value, 

then all that need be done is to type a further WHERE statement after the 

first result has been obtained. For example, once the result had appeared 

in the above calculation, the operator would then type 

>WHERE R = 8.435 

>RUN 

to get the result for a circle of radius 8.435, This process can be repeated 

for the values required. 

An alternative means of assigning a value to a variable is by means 

of a calculate statement. This will calculate a formula and assign the result- 

ing value to the variable. The form of a CALCULATE statement is 

CALCULATE variable name = formula 

and it can be used to break down a complicated formula. If the example 

MHBO005 of the parabolic segment where to be re-written, it could be 

presented as: 

> £MHB007 

> WHERE X = 3.9 

> WHERE Y = 7.349 

> CALCULATE SR = QSQT (4% xX ¢ 2 + (¥/2) f 2) 

> PRINT SR + (Y $ 2/8%x) * QLNE( (2*X + SR) / (Y¥/2)) 

> RUN 

Here X and Y would be assigned the values 3.9 and 7. 349 respectively, the 
square root calculated and assigned to SR and, finally, the value of the 
formula printed. Further results could be obtained by typing WHERE 
statements followed by a RUN command. If a new value of X were to be 4.23, 
then the operator would type 

WHERE X = 4.23 

RUN 

after the first results had been printed. In this case, the Y value would 

remain the same and the SR value modified. 

AT 



In order to avoid repetitive typing of command words it is possible to 

group command statements together. In this case one command word is 
typed followed by a statement. If the statement is terminated with a ; 
symbol a second statement may be typed with the command word assumed. 

For example: 

>WHERE X " ES 

>WHERE Y " a 
may be replaced by 

>WHERE X = 4 ; ‘ 

> Y= 5 

In the particular case of the WHERE command it is possible to omit the ; 
symbols altogether. 

The ; symbol can, in fact, be used to terminate a statement even 

though the same command is not to be repeated. This is especially useful 

when the operator is unsure of the statement that he has just typed. In this 
case the ; symbol followed by the characters cr lf will help clear up any 
problems before the next command is entered. For similar reasonitis useful 
to always start a new command or new command statement-on a fresh line. 
This cangive more freedom in error recovery messages. 

The system can handle up to 26 CALCULATE or PRINT statements 

at any one time. They can be written in any order intermingled with WHERE 

statements. On the command RUN the computer will attempt to execute the 
statements in the order given. If at any stage this is not possible, then it will 
switch the order, holding back the difficult statement until it is possible to 

operate it. 

As many as 25 variables names may be used in the statements. 
Their values are held in the store until they are superceded at which time 

they are removed to make way for fresh values. 

One of the facilities of the Workshop system is that the computer 
continually re-organises itself automatically as the calculation proceeds. 
Once an initial set of results have been obtained the values remain assigned 

to the variables. If it is required to repeat the calculations for different 
variable values as has been shown, it was only necessary to re-type the 
WHERE statement. In this case any previous WHERE or CALCULATE 

statement that assigns values to the same variable is removed from the 

memory, Now if some variation of the formula is required for the same 
variable values, further PRINT or CALCULATE statements may be 

entered. Once a PRINT or CALCULATE statement has been entered to 

the system after the first RUN, all such statements up to the last RUN are 
deleted from the store, If in example MHBO007 it was subsequently 

required to learn of the value of SR, the operator would simply have to type 
a further 

> PRINT SR: 

>RUN 

A8& 

In such a situation the value of SR would remain and be printed without the 

computer recalculating SR or printing out the formula for a second time. 

The automatic re-arrangement of the calculations can be avoided if a 

REPEAT command is used. The word REPEAT may be typed at the beginning 
of a further series of runs to preserve the PRINT and CALCULATE state- 

ments that have so far been accumulated. For example if instead of the above 

PRINT modification it had been required to recalculate the formula of 

example MHB007 for the case of X = Y = 7.349, the operator would have 

typed 

> REPEAT 

> CALCULATE Key; 

> RUN 

and the original value of X would have been overwritten by the value of Y, 
the value of SR recalculated and the new value of the formula printed. 

As a general rule it can be considered that further WHERE state- 

ments will overwrite previous assignments to the same variable, and further 
PRINT or CALCULATE statements will supercedé any such statements 
previously accumulated. It will not harm the system to add REPEAT state- 

ments at the beginning of a further set of calculations if the previous cal- 

culations are to be repeated. The following worked example will serve to 

illustrate the organisation of the store: 

>£MHBO008 

> WHERE A= 3 

> PRINT A $2 

> RUN 

9.00000000000 

> WHERE A=2 

> RUN 

4. 00000000000 

> REPEAT 

> CALCULATE A = B 

> WHERE B=5 

> RUN 

25. 0000000000 

> PRINT A + B 

> RUN 

10, 0000000000 

AY 



>WHERE A = 3 

>RUN 

8. 0000000000 

>PRINT 

>A; 

>B 

>RUN 

3, 00000000000 

5. 00000000000 

> 

Two further facilities are useful when entering the formulae. These 

are the insertion of comments and the extended use of the < symbol. 

After the initial reference code it is possible to type a comment about 

the formulae that follow. It must be formed by letters and digits that do not 

spell out exactly any command word. This facility may also be used 
immediately after a RUN command, e.g. 

> £MHBO009 

> THIS IS A COMMENT AND MUST NOT CONTAIN 

> IN EXACT FORM ANY PRINTS CALCULATES WHERES ETC, 

> PRINT 3/4+2 

> RUN 

2. 75000000000 
> THIS IS ANOTHER COMMENT 
> PRINT 3+4 
> RUN 

7. 00000000000 

> 

As has been mentioned earlier, the <symbol can be used to delete the 

entered formulae further back than the current line of type. If the symbol is 
typed immediately at the beginning of a line, the machine will refer the 
operator back to the beginning of the command statement that he was typing 

at the beginning of the current line. For example in the case 

> £MHBO10 cr lf 

> PRINT A+ B-  crif 

>c*D cr lf 

es 

AlO 

the operator would be referred back to the beginning of the current command 

j.e. back to just after the word PRINT. This is especially useful after some 

error in an extended formula e.g. 

> £MHBO11 

> PRINT(A + B -C * D 

> ¥(e - f)5 

$ * (E - F) 3 €---- Computer report: 

TOO MNY ($ Too many brackets opened 

$BEG LST LNE $ Recover beginning last line 

>< < Symbol typed 

Computer report 
recover last command 

$BEG LST COM$ 

> (A +B - Cc) * D 

> *(E - F) ; 

> and accepted 

Correct statement typed 

This form of recovery is not always possible, especially when there are 

several statements on one line. 

o WORKSHOP SYSTEM WITH MATRICES AND INDICES 

It is possible within the system to extend any variable name to refer 

to an array of values rather than a single value. Workshop will handle 

formulae involving vectors and matrices and provides general facilities to 

manipulate them. 

Any variable name can be used to refer to an array if index letters are 

attached, These letters can be from the list < 

1JKLMN 

and can appear in any order. The following are possible array names 

X1 FGll FJJ V1IKJ CLMJK FIKJLMN 

The number of indices attached will indicate the dimension of the array and 

once a name is used the system will expect the operator to be consistent 

with the number of dimensions. However, the size of each dimension may 

vary over different calculation runs, It is possible to accommodate up to 

6 dimensions for a particular variable. 

The WHERE statement provides a means of assigning values to an array. 

This time the statement includes all the array values in place of the single 

value previously e.g. 

WHERE Al = 45 5.678 34.6 45.93 

All 



This statement will assing to the variable A the values 45, 5.678, 34.6 and 

45.9 in turn wherever it is used in a formula. If more than one dimension is 

required, the additional values are laid out as they might appear on paper 
e.g. 

> WHERE BIJ 

>1 0 0 0 

70 1 0 0 

>0 0 1°06 

0 be ed DG 

or, > WHERE CIJK 

>1 0 0 

310 ds 10) 

>o0 0 1 

> 

>2 3 4 

Sh 6: 

28 9 0 

which represents a 4 x 4 matrix and a 3 x 3 x 2 matrix respectively. In the 
case of CIJK the last dimension is separated by more lf characters than any 

other dimension. As a general rule higher dimension blocks are separated 
by more lf characters than any lower dimension, The system is prepared to 

automatically compound down the number of dimensions if there are less 
required than might at first appear. For example if the last case had been 

> WHERE ClJ = 

>1 0 0 

>o0 1 0 

> OF 0. 

>2 3 4 

2Si36 7 

= 8: 9 0:5 

then the first dimension would be dropped to provide CIJ with the 9 x 2 
matrix of values, the first dimension being extended over three lines of 
type. 

As a convention, the system expects the 1 dimension of a variable to be 

typed across the script, possibly extending to further lines if the dimension 
is along one. The J dimension will be typed downwards, cach matrix row 
being separated by the same number of If characters. This must, of course, 
be greater than the number of If characters used to space the elements 
inside the] dimension, Similarly the K dimension blocks will be spaced 

by the same number of If characters between each block which in turn is 

greater than any number of lf characters used before, and so on to the N 

dimension. Al2 

When the variable appears in a formula that is part of a CALCULATE 

or PRINT statement it is always assigned values in order of the index letters 

IJKLMN. The computer will automatically loop through the dimensions with 

lin them, making 1 = 1, 2, 3 etc. before looping through the dimension 

with J. This applies along the list. An example might be to follow the above 

WHERE statement that assigns values to CIJ with a CALCULATE statement 

so 

>CALCULATE DIJ = CJI ; 

in which case DIJ would become a 2 x 9 matrix 

1 

0 

0 

0 

1 

0 

0 

0 

o
D
 

MW
 
N
O
H
 

F
W
D
 

1 

This is exactly the pattern the PRINT statement will adhere to in its layout 
of results. If the operator had wanted to print out the values of the DIJ 
matrix in the above form, he would have typed 

> PRINT DIU ; 

If he has wanted to print the matrix in the original form he could have typed 

> PRINT DJI ; 

in which case the computer would have tried to print 2 rows of nine figures. 
In the process of trying this it would find that as many figures as could 
have been typed on a line had been typed and would automatically continue 
on afresh line. The 9 x 2 matrix would appear as 

1, 00000000000 000000000000 000000000000 000000000000 

1. 00000000000 000000000000 000000000000 000000000000 

1, 00000000000 

2. 00000000000 3.00000000000 4.00000000000 5, 00000000000 

6. 00000000000 7, 00000000000 8.00000000000 9. 00000000000 

000000000000 

The PRINT statement automatically spaces out the results according to the 
convention of the WHERE statement for all dimensions. 



When the system is scrutinising the statements that are typed it 

examines the number of the dimensions to check for consistency both for 
the same variable name and within a particular formula. The question it 

asks itself is whether the statements make sense logically. If not, then 

an error message is printed. If the size of dimensions do not match, then 
an error message will appear during the calculation run, 

The dimensions of a matrix may be contracted by typing one of the 
digits 1, 2, 3, 4, 5, 6, 7, 8 or 9 in place of the index. This will then 

cause the variable to take on the values only in the specific dimension e.g. 

> CALCULATE El = D21; 

where DIJ is the variable defined above. This would cause El to adopt the 

values 23456789 0 in its first dimension, Alternatively CALCULATE F 
= D15 ; would assign the value 1 to the variable F. 

There is a third method of accessing elements of a matrix by index 

declarations, This involves using a formula to find the index value required. 

If the variable name only is followed by an open square bracket, a formula 

for each dimension separated by commas and a closed square bracket thus 

C [formula, formula ] 

then wherever this variable might appear the formulae inside the brackets 

is calculated and the integer parts of the values used instead of indices, 

Further any index that is included inside the brackets has its range of 

values interpreted in the main formula. These index declarations cannot 
be nested. An example might be 

> WHERE AIJ = 

>10 20 30 

>40 50 60 

>70 80 90 

>100 110 120 : 

>Bl=1322; 

C1 #22 34 3 

> CALCULATE D1 = A [BI, CI] ; 

which would assign to the variable D the values 40, 60, 80, 110 respectively. 

It is possible to use the index values on their own in the calculation. 
Then the index is written as though it were a variable with zero dimensions 
e.g. 

CALCULATE EI = CI + I ; 

would provide the variable E with values 3, 4, 6, 8. It must be noted that 
if the operator entered 

CALCULATE EI = 1 ; 
there would be no way by which the system could assign a range of values 
to the index. He may create a matrix from indices by writing, for example 

CALCULATE EI = 1 + CI - Cl; 

Al4 

which would construct an array of values for the variable E based on the 

values of the indices and the size of the array of values for the variable C. 

Otherwise the statement would be assigned the dimension zero. 

If it is required to overwrite the assumed ranges for indices a 

range declaration may be placed either at the beginning or end of the 
statement by typing 

[index = formula, fit, “Srormutay indie Sdoemure tte ned 

and can be read as 

"for! index 'equals' formula ‘up to' formula ‘and for where the 

equivalents are 

with the close brackets as the end of the declaration. It will therefore 
be possible to subdivide an existing array or create a new one, for 

example 

CALCULATE GIy = au [1=2fts, yg thee 

would partition out of the above matrix the values 

80 90 

110 120 

and assign them to the variable G. Another example is 

CALCULATE uly = QDEL (1-3) [1 = offs, r= oft 3] 

which would assign to U a 4.x 4 unity matrix. Any formula can be placed 
inside the range declarations as long as it itself does not include such range 

declarations or have any loose indices. This is a reinforcement of the 

statement that the system cannot cope with any illogicalities. 

There are a number of loop functions that are of particular help in 
manipulating matrices. They are QSUM, QPRD, QMAX and QCNT and 

enable the operator to sum, find the product, find the maximum and count 
the elements in an array. The functions are immediately followed 

either by the indices over which it is required to execute the function or 

by an index range declaration of the above form, The full six dimensions 

may be used and the functions can be nested. Also it is possible to 

repeat the same index letter both outside and within a function and inpute 

the logical meaning to it. For example 

WHERE Al = 1123 

PRINT QSUMI (Al + QSUMI Al) ; 

Al5 



where X is the name of the above array, then all assignments of values 
either by WHERE or CALCULATE statements are cleared from the store. 
This comman is particularly useful when inversion is required. 

would provide the value 16, Further examples are 

WHERE Al = 1 LT 2 

CALCULATE BU =A1 [3 = 1ffecntTral] ; 4, | WORKSHOP FOR ITERATED CALCULATIONS 

which would construct for the values of B a square matrix of the same row 
values as the variable A i.e. 

There is a further command that enables the system to be used for 

iterated calculations. This is the command word ITERATE. Basically 

it is a version of the CALCULATE command with the following differences. 
1.1 2 

An ITERATE command may assign values to a variable which already 
1) yz has values. Therefore it is possible to write, for example 

1 1 2 >WHERE A = 4 

which could be followed by > CALCULATE B = 2 

PRINT QSUMI BIJ ; QSUMJ BIJ ; > PRINT B 

which would then print out the row and column totals as a horizontal and b/ NSHSR aia) dhs r= vertical set of values. 
> RUN 

There is a further facility that enables the operator to find the 

inverse of a square non-singular matrix. This is the matrix function 
QMIN which can operate only on a two-dimensional array. If the array 
is not square the system will attempt to cut the second dimension size 
down to match the first dimension. If this is not possible, it will print out 
an error message. An example of its use might be 

> RUN 

> RUN 

> RUN 

> WHERE XIJ = to find the values 8, 16, 32 and 64 printed out between the RUN commands. 

>3 Fé 9 A second difference is that the ITERATE statement must come 

logically at the end of the list of WHERE, PRINT and CALCULATE statements. 
>12 5 3 Then the values are updated ready for the next iteration. 

>76 45 64 Several ITERATE statements can be used together. They may 
generally be used with all the other facilities of the CALCULATE 

> CALCULATE IXIJ = QMIN XIJ ; statement. 

In this case it can be considered that QMIN XIJ is the IJ element of the 
matrix inverse of X. In the example the inverted matrix would be passed 
in value to the variable IX, The matrix inversion usually uses a large 
amount of store and it is not usually possible to invert a matrix of size 
greater than 11x 11, 

It is important to note that, in line with the other commands, it is 
not generally possible to assign a value to a variable in terms of a formula 
containing the same variable. This is an important difference to all other 
computer languages. A secondary variable must be used when the ITERATE 
statement reassigns values to an array. 

If during the calculations it is found that the store restrictions are 
pressing, it is possible to discard some of the information using a FORGET 
command, Ifthe operator types in the word FORGET followed by a 
variable name only e.g. 

> FORGET X ; 

Al6 



OPERATION OF WORKSHOP OFF-LINE 

ENTRY TO THE SYSTEM 

When Workshop is used off-line to the computer the user's 
requirements are presented to the machine on paper tape. Once the 

program has been loaded and triggered, the tape is offered to the 
paper-tape reader on the computer. This then scans through the tape and 
extracts the necessary information. 

The paper-tape is punched on a flexowriter. The information typed 
is in the form of a script resembling closely the layout used for the on-line 

teleprinter. In this case, however, the script is typed in its entirety 
and errors cannot be discovered until the whole off-line operation has been 

completed. If there are errors in the script, the lines of script containing 

the errors will be ignored by the system. 

The script must begin with a reference code, This comprises of a £ 

sign, the user's initials and his own reference number. They are typed 

as in the example 

&MHBOOL nl 

where the nl character is a newline of the flexowriter. This replaces the 

cr lf characters of the teleprinter. The £ sign will serve to clear the 

system and punch out a series of header blanks on the computer punch, the 

initials to identify the user when the results are finally printed, and the 
reference digits will provide the user with his own referencing code. 

The user may string together on the tape a series of separate runs 

by simply repeating a reference code at the beginning of each run, Each 
time the computer reads the code it will completely clear the system and 
start afresh. 

SPECIFICATION OF THE CALCULATIONS 

Once he has typed his introduction to the system the user will 

specify the calculations that he requires. This is done by a series of 
command statements which are logical descriptions of the required 

formulae and the values that are to be placed in them, The form of the 
statements is described below. 

If the user wishes to remove an error during typing, then he may 
effectively erase the current line by typing a < symbol. 

OPERATION OF THE SYSTEM 

The completed script is offered to the computer which will then read 
it aline atatime. A fresh copy of the correct script is output at the 
paper-tape punch interspersed with reports on errors that have been 

detected, The machine will then 'run' the calculations as requested in the 

A Bl 



script describing any further errors by means of the output tape. The 
output tape is finally printed on the flexowriter complete with results. 

B2 

SPECIFICATION OF FACILITIES 

The following is a specification of all the facilities used in the 

Workshop system, Cross-references to-extended descriptions are 

provided in brackets, 

SYMBOLS 

i. The characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, A, B, C, D, E, F, 
G, H, I, J, K, L, M, N, O, P, Q; R, S, T, U, V, W, X, Y, Z and - are 

generally used to describe command words, reference codes, variable 

names, functions, values and comments. 

Bie The characters a, b, c, d, e, f, g, h, i, j, k, 1, m, n, 0, p, q Tr, 8, 
t, u, v, w, x, y, Zz, which can be used in off-line operation, are read as 

capital letters. 

iii. The character nl (newline) has the same effect as the character lf 

(line-feed) both terminating the current line of type (see pages Al, A2, Bl). 
This will occur when they are not the first characters typed on a line or 

when they do not immediately follow a nl or If character. They'are 

treated otherwise as separators which have a particular meaning in the 
WHERE statement (see page A6 ). 

iv. The characters cr (carriage-return), bell, tab, space and halt are 

all read as sepratators, used only for terminating words and assisting 

in the layout of formulae. In a formula separators are ignored unless they 

are essential to the meaning. 

v. Erase characters and blank tape are ignored by the system, 

vi. The sign $ has a meaning on output only when it is used to bracket 
error reports or computer comments, 

vii. The & symbol, when read, throws the system into a'systems jump! 
This has the effect of providing an exist from Workshop to the surrounding 

program system environment. The jump is effected immediately the computer 

receives the character. 

viii. Open and closed brackets ( ) are used to partition sections of a 
formula. They can be nested up to 49 times in a formula, but in practice 

the limit is usually less than this. 

ix. The mathematical symbols *, -, +, and / provide the operations 

multiplication, subtraction, addition and division for use in writing 

formulae. The system logic places a priority on them of the order + - / * 

i.e. multiplication is carried out before division which is carried out before 

subtraction which is carried out before addition. 



x. The symbol is used in a formula to denote 'raise to the power', It 
is considered of a higher priority than the multiplication and will be 

executed before i It is permitted to write? + or t- in a formula to denote 

'raise to the positive/negative power' as a special case of two mathematical 
symbols occurring together. The double characters ff are used in range 
declaractions to mean 'up to' (see page A1l5). 

xi. The symbol , is used in index and range declarations (see page 15). 
In the former it can be read as 'and the index for the next dimension is given 
the value of' and so serves to partition the formulae of the declaration. 

In the latter it means ‘and for' where it partitions the declaration of the 
index ranges. 

xii. The symbol ; is used to terminate a statement. It is not essential, 
but will cause any error report to be made on the last line of the 

statement rather than at the beginning of the next command word, thus 
aiding error recovery. It has the effect of terminating the statement and 

setting the last command word as the assumed command word for the next 
statement, 

xiii. The symbol < is used to recover fromerrors. If it is not the first 

character to be typed on a line, it will clear the line from the buffer in 

the system. If it is the first character, then it is interpreted as a request 
to 'begin at the last command word' (see pages A10, All). 

xiv. The = sign is used to read as 'equal to' in the WHERE, CALCULATE 

and ITERATE statements or in a range declaration. (see pages A6-9, 15-17) 
As such it separates the variable or index from a formula or a set of values. 

xv. The >symbol is used with a space character by the computer to 
signal that more information is expected. It has no meaning when typed 
by the operator. 

xvi. Square brackets [ | are used to contain index or range declarations. 
If the opening bracket immediately follows a variable name, then it is 
assumed to open an index declaration with the meaning 'where the index 

of the first dimension takes the value of the formula' (see page A14) 
Otherwise, if it immediately follows the name of a loop function or a 
separator it is used to open a range declaration, 'for' (see page A15) 

The closed bracket terminates the declarations. 

xvii, The £ sign has the effect of clearing the system completely and must 
be followed by the operator's reference code. It also provides a length of 

blanks at the paper-tape punch. 

Unless specifically mentioned, the symbols are read by the system 

from a buffer of 120 characters. They will not, in general, be examined 
immediately except for a parity check. 

c2 

OPERATOR'S REFERENCE CODE 

To enter the system the operator has to type a £ sign, to clear the 

system, followed by his reference code (see pages Al,Bl) The reference 

code must begin with a letter and be a continuous sequence of letters or 

digits terminated by anl / lf character or a separator. The first six 
characters of the sequence are stored in the system in internal code. 

The initial triggering of the system has the same effect as the £ sign 

except that it will also provide a > symbol on a newline at the teleprinter 

and a halt code at the paper-tape punch. 

It is impermissible to have a reference code of a command word, 

COMMENTS 

A comment may be typed immediately after the reference code or 

after a RUN command has been executed. It may contain any of the 
writeable characters as long as there is nowhere an exact command word 

with its terminating separator (see page A9) 

SPECIFICATION OF THE CALCULATIONS 

The calculations are specified by a series of statements each of 

which is made up from various combinations of command word, variable, 

formulae and values, 

Command words. There are seven command words - PRINT, 

CALCULATE, WHERE, RUN, REPEAT, FORGET and ITERATE. The 
words are recognised only after an initiating separator or If / nl characters 
and must be formed by the exact letters followed by a; , a terminating 

separator or lf / nl character. If a second command word follows a 
PRINT, CALCULATE, WHERE, FORGET or ITERATE word 

immediately, then first command word is ignored. 

Variables. A variable can appear in one of two forms - 

i, A single letter from the list ABCDEFGH OP RSTUVWXYZ followed 

by a combination of indices from the list MKLMN. 

ii. A pair of letters, the first of which is from the list ABCDEFGHIJKLMN 

OPQRSTUVWXYZ and the second from the list ABCDEFGH OPQRSTUVW 

XYZ. Index letters may again follow. 

In particular, the combination RUN will be interpreted as a command 

word, 

The number of index letters attached to the variable name give 

dimension to the variable. It must be the number of dimensions whose 

size is greater than one, i.e. unity dimensions are not allowed and are 

considered as an operator error. The number of dimensions assigned to 

63 



to a particular variable name must be consistent throughout the 
calculations, It is possible to assign up to six dimensions to a variable. 

A maximum of 25 different variable names may be used in a 

calculation, This is reduced by one every time a different variable 
matrix is inverted. 

Values. Values are formed by a continuous string of characters from 
the set 0123456789, \+- + and are ordered by an optional initial sign, a 

set of digits with a decimal point if necessary, and an optional 10 followed 

by more digits. A+ or - sign may follow the _. character. 
10 

The letter Q on its own is used to represent the value of IL ina 
formula. 

Except for the values of indices, all values are entered and storeed 

by the system in three-word packed real form, giving permissible ranges 
if 1024 -10 - 1024 
Peay aan ie $9 OFF «16 andine OPS apt 

-3 308 #8 10 08 
i.e. in terms of decimal 

-3 exponents, 10 , 0 and 210 "86 107°’ aontom Duting 
manipulations of values in mathematical operations the ranges may be 
violated bya factor of 2°" with operation initesme’ortourwoua unpacked 
real form. Results can generally be considered as accurate to 12 
significant figures if no matrix operations are used. With matrix 
operations this may be reduced as a result of manipulation, 

Formulae. Formulae are written as combinations of 
mathematical symbols, variable names, constant values, index and range 
declarations, calculation functions, loop functions and matrix functions. 
They appear in strict mathematical form with the teleprinter symbols 
and functions substituting the mathematical symbols. (Each facility of 
the formulae is described in more detail below). 

In general, any indices that are not explained within the formulae 
are assigned ranges from the associated variables. Therefore the 

formulae themselves may be considered as having several dimensions. 

The framework of the formula is expected of the form symbol, 
non-symbol, symbol, non-symbol etc. This can be broken with the 
combinations f + or f- or by brackets, The formula or sub-formula 
within brackets may.commence with a symbol or non-symbol, where, in 
the former case, an initial value of zero is assumed. 

The function of the individual statements can be described in terms 
of the above components, 

WHERE Statement (see pages A6, A7) 

The WHERE statement allows values to be assigned to a variable 

name, It is written in the form 

C4 

WHERE variable = values 

If the variable is an array, it must have indices attached to indicate the 
number of dimensions. By convention these indices must preserve 
alphabetical order. 

The values are layed out according to the number of dimensions 

required. The lf / nl character is used to break the dimensions. A new 
dimension is opened as soon as there are more consecutive lf / nl 

characters than have so far appeared between values. The only exception 

is the first dimension which can extend over several lines of type. 

The order of the dimensions is understood as the same as the order 

in which the dimensions are opened in the layout of the values. 

Any errors in layout are reported as they are detected. It is 
not possible to make the system accept a layout in part, it will only 

accept layouts that completely match the variables’ indices. 

If several variables are to be assigned values, the ; symbol is 

assumed as soon as following variable name is written. Several 

assignments may therefore be made without repetition of the WHERE command 
or; symbol, 

CALCULATE statement (see page A7) 

The CALCULATE statement allows a new variable to be assigned 

values of formula of old variables. The form is 

CALCULATE variable = formula 

If the variable has indices attached, the formula must have the same 

dimension as the indices indicate. The values will be assigned in the order 

of the dimensions which will follow also the alphabetical order of the 
indices. 

If there are dimensions of the formula that are not deduceable from 

information already available, then the dimension must be declared with 

index range declarations. The information about all index ranges will be 

checked when the statement is read by the system. 

A variable name cannot appear on both sides of the = sign. 

PRINT statement (see page A2) 

The PRINT statement enables the values of a formula to be printed 

out when the calculations are run. 

PRINT formula. 

c5 



The values of the formula will be printed according to the’ 

alphabetical order of the indices. The 1 dimension across the page, 

possibly overflowing to extra lines, the J dimension in blocks separated 

by two nl characters, the K dimension separated by three nl characters, 

and so on. 

All nl characters on output are accompanied by cr and blank 

characters. Also additional newlines are output between PRINT statements. 

The order that the statements are executed will generally be the order in 

which they are specified. If, due to some run time error, it is not possible 

to execute some PRINT statements the order may be changed, i.e. when 

the NOT ENH INF report is made the order of the statements in store is 

changed, 

ITERATE statement (see page A17) 

The ITERATE statement will overwrite a variable's value by the 

values of a formula. 

ITERATE variable = formula 

The variable which is the subject of the statement must have values 

previously defined by either a WHERE or CALCULATE statement. Each 

time the calculations are run, the statement will then redefine the values 

assigned to the variable. The dimensions must match on either side of 
the = sign(c.f. the CALCULATE statement pages 

A variable of zero dimensions may appear both as the subject variable 

and in the formula. However, if the variable has an array of values 

attached, the old values will be cleared before the statement is executed. 

FORGET statement (see page A2) 

Values may be deleted from store by means of a FORGET statement. 

FORGET variable name 

The variable name must not be accompanied by its indices. The 
number of dimensions of the variable is preserved. 

REPEAT statement (see pages 

The command REPEAT preserves all the calculations that were in 

operation on the last RUN command. It must either follow a RUN command 

or not be preceded by a PRINT, CALCULATE or ITERATE command within 
a set of statements. 

RUN (see pages 

The command RUN causes the system to execute all PRINT, CALCULATE 

and ITERATE statements so far accumulated. Values assigned by the 

ITERATE or CALCULATE statements are preserved (see pages 

Ccé 

When the PRINT, CALCULATE and ITERATE statements are read 

a series of programs are written in store. These programs are executed 

on a RUN command. The system continually reorganises the placing of 

the programs, removing redundant calculations wherever possible. 

WHERE, FORGET, REPEAT and RUN statements are, in contrast, 

executed as soon as they are entered, the values being placed immediately 

in store amongst the above programs. 

Redundant calculations and variable values are removed according 

to a flag set in the system. It comes into operation as soon as the first 

set of formulae have been calculated. The flag has two states 1 or 0 and 

the latter state is set immediately after a RUN command has been 

obeyed. When subsequent command words are entered the flag is 

adjusted and the store organised accordingly. 

Flag initially Flag set to Existing Store 

WHERE 0 or 1 No effect No effect 

CALCULATE ) 0 1 Previous formula removed 

PRINT ) 
ITERATE ) 1 1 No effect 

FORGET 0 orl No effect No effect 

REPEAT 0 orl 1 Variables calculated 
from current formulae 

cleared 

RUN 0 0 Variables calculated 
from current formulae 

cleared 

1 0 No effect 

Once the organisation has been completed the full command 

statement is obeyed. Error recovery over a command word reverts to 

the situation before the command was read. 

In addition, a set of variable values may be overwritten when new 

values are described by means of a WHERE, CALCULATE or ITERATE 

statement, Previous values are deleted from the store as soon as the 

statement is entered. Error recovery, however, in general will allow 

the operator to revert to a situation in store before the command word 

had been read. 

FACILITIES AVAILABLE IN FORMULAE 

i, Value of Pl. The value of Pl is available for use inside a 

formula. It is obtained by typing the letter Q. The value is retained 
as a constant in store throughout the calculations and is accurate to 15 

significant figures. 
Cc? 



ii. Additions and subtractions, Additions and subtractions are 
obtained from the.symbols + and - typed within a formula. The operations 
are accurate to 15 significant figures. There is, however, a test for zero 
in the result of the order of 13 significant figures. 

iii, Division. Division is available through the symbol/. The process 
used is that of long division accurate to 15 significant figures. 

iv. Multiplication. Multiplication is available through the symbol *, 
The system adopts a procedure of multiplication by parts and is accurate 
to 15 significant figures. 

v. Raise to the power. A value may be raised to a positive/ negative 
integer/real power. If the power is negative the value is inverted using 

division. An integer power less than ght is then obtained by a contracted 
repeated multiplication involving at most 17 steps. Large integer powers 
are calculated by taking logarithms of the modulus of the value with an 
appropriate sign adjustment. If the sign adjustment is ambiguous then a 
comment is printed. Real powers are handled by means of logarithms. 

vi. Logarithsm, The natural logarithm routine can be called by the 
group of letters QLNE. The subject of the logarithm can appear as a 
value or as an expression within round brackets. Whichever is the case 
the routine will find the natural logarithm of a real number. The value is 
taken as a fraction and a series calculated on the basis 

x=1 

e 
x1 

( 
slog ( 

( 
( 

The multiplier of the series is always less than 1/9 and the series is 
collected until terms are no longer of significance at 15 figures. The 
value is adjusted according to the exponent of the original real number. 

vii. Exponential. The exponential routine is called by the letter set 
QEXP. The valueor expression will be reduced to a real number which 
becomes the subject of the routine. The real number is amended and a 
series of exp x constructed with a multiplier between -0.7 and 0.7. The 
series is terminated at 15 decimal places and the result modified in its 
final exponent value. 

viii. Sine and Cosine. Routines to calculate the sine and cosine of an 
angle in radians can be called by use of the sets of letters QSIN and QCOS. 
The subject of a cosine is modified to provide the subject of a sine. The 
series is calculated from 

cos 
4 

and the multiplier of the series is always less than 0.16. The series 

terminates when additional terms are no longer of significance at 15 

figures, Angles may be of any size but will, of course, be only 

interpreted at the accuracy to which it can be reduced to the range of 

0 to W/2. 

ix. Arctangent. The arctangent of an angle may be found in radians 

by the set of letters QATN. The routine uses the series for 

arctan 3¢ 

where the multiplier of the series is never in excess of 1/4. The series 

is terminated when the terms are no longer of significance to 15 figures 
and the final result is modified to fit the range 

w mil y ~w 
ero ee 

x. Square root. Square root can be obtained by using a set of letters 

QSQT. The routine finds the square root by using the logarithm and 

exponential routines. 

xis Factorial The factorial of a value can be obtained by writing 

QFAC. The subject of the factorial is initally reduced to an integer part 

and then the value of the factorial calculated by repeated multiplication. 

xii. Delta. A logic function is provided to recognise values which are 

exactly zero, ‘The consequence of QDEL is unity if the subject is exactly 
zero and zero otherwise. 

xiii, Sign. A logic function is provided to recognise the sign of a 

value. The consequence of QSGN is to provide zero if the subject is 

exactly zero, +1 if it is positive and -1 if it is negative. 

xiv. Modulus. The modulus function is provided to extract the size of 

a value regardless of sign. 

xv. Integer part. The integer part of a value can be extracted by the 

letter set QINT. The subject value will then be cut off downwards to an 

integer value. 

xvi. Loop Functions. It is possible to obtain the operations of 

summation, product, maximum value and count by use of the sets of letters 

QSUM, QPRD, QMAX and QCNT, each of which calls a loop function. 

Each loop function must be immediately followed by either a list 

of indices or a range declaration to describe the dimensions over which 

the operation is required. In the former case the ranges of the indices are 

assumed from the following arrays and in the latter case they are set by 

the declaration. The system will write the appropriate program loops to 
count in steps of 1 through up to 6 index ranges in their alphabetical order. 

cy 



The loop functions can be nested up to 10 deep and the indices are attached 

fo the loop functions in the conventional way. 

Once a summation loop has been opened, it is subsequently 

closed at the priority level of a + or - sign. A product loop is closed by the 
priority level of a/, *, + or - sign. The maximum and count loops are 

closed by the priority of any of the mathematical signs. 

xvii. Matrix functions. There is one matrix function provided which is 

written as QMIN. This will provide the inverse matrix of the subject of 

the function. It operates on a two-dimensional array in a formula and will 
provide the element of the inverse indicated by the indices. 

When the function letters are entered the system automatically 

declares an inverse array in store. If they are used several times in a set 

of calculations the array is shared, The indices that are attached to the 

subject variable will then serve to extract a value from the inverse array 

rather than from the original. This secondary array is organised in the 

system in the same way as the original 

The values for the inverse array are constructed as soon as the RUN 

command is entered. This will be before any formulae are calculated. 

Should the original array not be calculated until some formula has been run, 

then the inverse is constructed as soon as possible. 

The calculation of the inverse has as an initial stuge a check on 
dimensions. If the original matrix is not square, the system will attempt 
to partition it. Should the attempt fail, an error message is printed. The 

partitioning is only possible if the first dimension of the original array does 
not exceed the second dimension in size. The matrix used for inversion 

will be the largest square matrix that starts with the first row of the 
original. 

Singularity is tested by means of a breakdown in the calculations. 
Thé construction of the inverse involves building a double matrix in store 

from the original matrix and a unity matrix. The double matrix is then 

reduced by a series of row and column manipulations comparable with the 
solutions of a set of simultaneous equations. The manipulations are all 

carries out in unpacked real representation at an accuracy of 15 

significant figures and involve multiplication, division, addition and 
subtraction operations. 

As a final stage the resulting unpacked matrix is packed to provide 
a rounded 13 significant figure representation in store in common with other 
storage of values. 

xviii Range declarations. Range declarations may be used to declare or 

modify the ranges that indices will adopt ina formula. They can appear 

immediately after a loop function name and so control the indices of the loops 

or otherwise be placed at the beginning or end of a formula and so modify 

the index ranges over which the formula is to be calculated. 

The ranges of indices are set when a tormula is read by the system. 

Indices are initially set to take the unity value only. If an index occurs 

after a variable name then the ranges are modified to follow the size of 

dimensions in the variable array. 

C10 

These ranges are considered completely overwritten by a range declaration. 

However, the ranges are set, the indices will be updated in steps of one from 
the lower bound to the upper bound, The range declaration involves specify- 

ing the bounds by means of separate formulae. 

The complete declaration must be contained inside square brackets and 

the separate range declarations for each index separated by commas. For 
each index the declaration takes the following form 

Index name = fovmulatt formula. 

The index name is separated from the rest of the declaration by means 
of an equal sign. The lower bound value is specified by a formula followed 
byttcharacters, These characters can be read as ‘up to! and will precede 
the upper bound value specified by a formula. 

When the declaration is read separate programs are written to compute 
the values of the formulae, and extract the integer part of the result. 

At the end of the declaration these programs are placed within the main 

calculation program so as to immediately precede the opening of the index 

loop in question. This means that at the beginning of the loop all the 
necessary information must be available to calculate the bounds. Also 
any indices mentioned in the declarations and not themselves set in range 
in the declaration will be carried outside to the main formula to a position 

before the loop in question starts. As such there is no logical way in 

which a free index can be interpreted inside a range declaration that applies 
to a whole calculation formulae. 

The range declarations cannot be nested. They also involve a 
reshuffling of the calculation program currently under construction and so 
provide some restriction on error recovery. Recovery messages are, 

however, diverted and the extent of the recovery changes can be deduced 
from the computer reports. 

xix. Index values. The current value of an index can be obtained in a 
formula by writing the name of the index required. If the index is not used 
to access elements in an array directly, there is no reason why the range 
declaration should not allow it to take on negative or zero values. 

xs Index declarations. A particular element of an array may be 

accessed by either mixing in with the indices that follow the variable name 
a digit in the range 1.......9 inclusive or by replacing the whole set of 
indices by declaration inside square brackets. 

In the first case a digit is used to replace the index letter in the 

dimension that is being contracted. The array is then treated as one with 

one less dimension than the original. 

In the second case the variable name is followed by a set of formulae 

separated by commas all inside square brackets. There must be one 

formula for each dimension of the variable array. When such a declaration 

is read a separate program is constructed to find an integer value for the 
particular dimension. When the full calculation program is run these 
sub-programs will provide the values of indices to eventually access the 

array element. As such there is no conclusion drawn by the system at 

entry time about the sizes of dimensions of the variable 

Cll 



If values indicate an element outside the variable array, then an error ERROR MESSAGES 
message is made when the programs are run. Ranges on indices inside the 

declaration are interpreted as the placing of the variable name might 
suggest in the main formula. 

Errors may be noticed by the system when the statements are entered 

or when the calculations are run, They result in messages being printed 
inside $ symbols. 

Index declarations may not be nested. 
Ls. Errors on statement entry. The entry of statements provides the 

system with a means of reporting on errors and the operator with a chance 

of immediate correction. The form of an error report at this stage is to 

print out the last line of the current statement entered up to and including 
the offending character. This character is then emphasised by an arrow 
and a following message is printed to indicate the nature of the error 

(a list of the messages is given below). 

Once the error has been reported, the system will attempt to provide 
the operator with an opportunity to start his script again from the beginning 
of his incorrect line of type. Should this not be possible, it will attempt to 
start him at the beginning of the erroneous statement i.e. immediately after 
the statement's command word. As a final resort the operator will be refer- 

red back to the beginning of his calculations. The system's conclusion about 

the recovery point is reported in a further message. 

In particular, difficulty in error recovery may arise when range 
declarations are used in formulae or when there is a large amount of 

information already in store. 

It is possible for the operator to call for recovery to the beginning 
of the current line or to the beginning of the current statement by means 

of a < symbol. It may not always be possible for the system to follow 
this direction. 

ii. Errors at runtime, There are two main methods of reporting errors 

that are detected when the system is running the package of calculations, by 
using an assumed value and by skipping the current calculation. 

Some errors are reported whilst the results are being printed. The 

system will attempt to assume values for the particular calculation and 
so enable other results to be printed. In this case a message is typed 
about the action that the system has taken and the printing of results 
resumed below the part at which it broke off. The following result printed 
will have resulted from the system's escape from the error. 

If an error is repeated, or if there is no appropriate action to take 
the current calculation is finished and the system moves to other calculations, 

In this case the order of the calculations may be affected. After a report on 

the error an indication of where it has occurred may be made followed by 

a report indicating that the system is skipping over the calculation for the 

current run. 

The error messages are written in a contracted word form. The 
words are designed to quickly indicate what the system sees the mistake 
to be. It is quite possible that the error has arisen from another source! 
The following is an explanation of the contracted words used together with 
a reference to the aspect of the system that is either under question or will 
provide further explanation. 

Cil2 Du 



PSE GVE CDE 

NO REC LBL 

TOO MNY VAL 

DIM NOT BAL 

DIM INX ERR 

TOO MNY CAL 

NOT ENH INF 

VAR TWO LTS 

NO VAR OR= 

OVR WRT VAR 

TOO MNY VAR 

NO ROM LFT 

NO SYM = 

Please give code. Asks the operator to specify his 
reference code again or otherwise to give his reference 

code (see page C3). 

Not recognise label. A new variable name has been 
specified that should have occurred before. Usually 

found in a FORGET or ITERATE statement (see page C6 ). 

Too many values. There is not enough room in store 

to accommodate the values given. 

Dimensions do not balance. The layout of values ina 

WHERE statement does not provide a rectangular array 
(see pages C4, C5). 

Dimension index error. The dimensions given to the 

variable which is the subject of a WHERE, CALCULATE 

or ITERATE statement do not logically match the layout 
of the free indices in the formula(see pages C4, C5, C6). 

Too many calculations. Too many formulae have been 
specified in the current set of calculations i.e. the 

list of formulae is too long (see page A8). 

Not enough information. There is not enough information 
to complete the current set of calculations (see page D1). 

A variable name has at most two letters. The current 

statement appears to use a variable name which does 

not fit the requirements (see page C3 ). 

No variable or = sign. The current WHERE, CALCULATE 
or ITERATE statement does not have a subject variable 
(see pages C5 & C6). 

Over-write variable values. The statements so far will 

over-write values already allocated to a variable name. 

Too many variables. In the set of calculations specified 
so far there are more variable names declared than can 
be accommodated (see page. A8) 

No room left. The working store of the system has no 

space in which it can place programs or values. There 

are too many values in store or too long a set of 

calculations, 

No symbol =. An = symbol has been omitted from either 
a WHERE or CALCULATE statement (see pages C4 & C5). 

D2 

INX NOT ORD 

TOO MNY BRK 

TOO MNY ) 

NO NST DEC 

TOO FEW ) 

FN LBL ONY 

MIS WRT FN 

TOO MNY LBL 

DIM NOT CST 

NO REL INX 

TOO MNY INX 

TOO MNY CST 

NO CAL ROM 

TOO MNY LPS 

LNE TOO LNG 

PAR ERR 

IN INV 

Indices not ordered. The indices attached to the 

variable which is the subject of a WHERE, CALCULATE 

or ITERATE statement are not presented in alphabetical 
order (see pages C5 & C6). 

Too many brackets, There is not enough room in the 

system to accommodate such a degree of nesting of round 
brackets in the formula (see pages Cl). 

Too many closed brackets. The number of round brackets 

opened is less than the number closed in the formula, 

Not nest declarations. An attempt has been made to nest 

either index or range declarations (see pages C10, Cll & C12). 

Too few closed brackets. The number of round brackets 

opened exceeds the number closed in the formula. 

Function label only. A group of letters appears to have 

been used for a variable which can only be used to indi- 

cate a function operation (see pages C3 ). 

Mis-write function. It appears that a function operation 
has been mis-spelt (see pages C4). 

Too many labels. There is not enough room to accommo- 

date so many variable names. (see pages C4), 

Dimensions not consistent, The number of dimensions 

attached to the variable namie is not the same as was used 

before (see pages C4), 

No related index. There is no logical way of determining 
the index values (see pages C10 & Cll). 

Too many indices. The number of indices indicate that 

the number of dimensions exceed 6 (see pages C3 & C4). 

Too many constants, There is not enough room in the 

system to accommodate so many constant values in 

formulae (see pages C9 ), 

No calculation room, There is not enough storage space 
left to run the calculations. 

Too many loops. The system cannot accommodate so 

many loops nested (see pages C9 ). 

Line too long. Too many characters have been placed 
on aline of type (see pages C2). 

Parity error.A character has been read for which the 
parity check has failed. 

In matrix inversion of A comment on where the above 

error has been detected. 

D3 



IN CAL 

SKP CUR CAL 

NO REC POS 

BEG LST LNE 

BEG LST COM 

INX TOO SML 

ASS VAR ZRO 

INX TOO LRG 

MIX INV DIM 

MTX INV NSQ 

NO ROM INV 

MTX INV SNG 

INT TOO LRG 

ASS LRG VAL 

In calculation of . A comment on where the above 

error has been detected. 

Skip current calculation. A comment on what the 

system has done (see pages D1 ). 

No recovery possible, The system is unable to 
recover from the error (see pages Dl ). 

Begin at last line oi type. 

Begin at the end of the command word attached to 
the current statement i.e. the statement which has 
not yet been terminated by a further command 
word (see pages All). 

Index too small. A value of an index is too small 

to be used to access an element (run a variable 

array) (see pages Cll). 

Assume variable value zero. A comment that 
indicates that the system has not been able to 
access an element from a variable array and is 
assuming the variable has zero value. 

Index too large. A value of an index is too large to 

be used to access an element from a variable array 
(see pagesCll ). 

Matrix inverse dimensions. An attempt has been 
made to invert an array of values which is not two- 
dimensional (see pages C10). 

Matrix inverse not square. An attempt has been 
made to invert a matrix whose dimension sizes do 
not match (see pages 10). In particular whose 
first dimension exceeds the second. 

No room for inverse. There is not enough room to 
invert the required matrices. 

Matrix inverse singular. An attempt has been made 
to invert a singular matrix (see pages C10), 

Integer too large. An attempt has been made to find 
the integer part of a value which is larger than 517 

Assume large value. A comment that the system is 
continuing with the calculation on the assumption of 

the largest acceptable value. 

D4 

DIV BY ZRO 

ROT NGV VAL 

PWR SGN AMB 

ASS SGN POS 

WNG CHR 

VAL TOO LRG 

VAL TOO SML 

ASS ZRO VAL 

CAL TOO LRG 

LNE ZRO VAL 

LNE NGV VAL 

FAC NGV VAL 

Divide by zero. An attempt has been made to 

divide by zero. 

Root negative value. An attempt has been made 

to find the root of a negative value. 

Power sign ambiguous. An attempt has been made to 

raise a value to a large power with the result that the 

sign of the result is ambiguous (see pages C8 ). 

Assume sign positive. A positive sign is assumed as 

a conclusion to the above report. 

Wrong character. The character upsets the logic 
of the statement. 

Value too large. A value has arisen in calculation 
that exceeds the ranges allowed (see pages C4 ). 

Value too small. A value has arisen in calculation 

that exceeds the ranges allowed (see pages C4 ). 

Assume zero value. A comment on the continuation 

of a calculation assuming the current value is zero. 

Calculations too large. The formula at present being 
entered is too large for the amount of store available. 

Logarithm zero value. An attempt has been made to 
find the natural logarithm of a zero value. 

Logarithm negative value. An attempt has been made 
to find the natural logarithm of a negative value. 

Factorial negative value. An attempt has been made 
to find the factorial of a negative value. 

D5 



WORKSHOP SYSTEM PROGRAM 

The 'Workshop' program is written in Elliott S,I.R. 
language to operate in 8k of a 900 series machine. The program occupies 

locations 32 to 5950 inclusive and uses as store all locations up to 8000. 
There are two versions, on-line and off-line, differing by one instruction 

only. When an on-line teleprinter is used the copy of the entered text that 
could be produced at the paper-tape punch is suppressed. 

The binary-dump version is a contracted binary form 

allowing quick loading. It has an additional 200 locations attached which 

are overwritten as soon as the system is used. These extra locations 

hold a self copying program which can be triggered at location 8. The 

system is loaded under initial instructions and the tape is self-triggering 
at 32 on a successful load. If it is misread a string of erase characters 

is output at the punch. 

M. H, Beilby 

Department of Transportation 

and Environmental Planning 

El 


